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Abstract

Computational models in biology encode molecular and cell biological processes. Many of

these models can be represented as biochemical reaction networks. Studying such net-

works, one is mostly interested in systems that share similar reactions and mechanisms.

Typical goals of an investigation thus include understanding of model parts, identification of

reoccurring patterns and recognition of biologically relevant motifs. The large number and

size of available models, however, require automated methods to support researchers in

achieving their goals. Specifically for the problem of finding patterns in large networks only

partial solutions exist. We propose a workflow that identifies frequent structural patterns in

biochemical reaction networks encoded in the Systems Biology Markup Language. The

workflow utilizes a subgraph mining algorithm to detect the network patterns. Once patterns

are identified, the textual pattern description can automatically be converted into a graphical

representation. Furthermore, information about the distribution of patterns among a

selected set of models can be retrieved. The workflow was validated with 575 models from

the curated branch of BioModels. In this paper, we highlight interesting and frequent struc-

tural patterns. Furthermore, we provide exemplary patterns that incorporate terms from the

Systems Biology Ontology. Our workflow can be applied to a custom set of models or to

models already existing in our graph database MaSyMoS. The occurrences of frequent pat-

terns may give insight into the encoding of central biological processes, evaluate postulated

biological motifs or serve as a similarity measure for models that share common structures.
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Introduction

Modelling is an integral part of computational biology (1).

Its increasing impact is reflected in the rapidly growing

number and complexity of computational models (2, 3).

Such models encode a wide range of biological processes

[including cell cycle processes, apoptosis, mitogen-

activated protein kinase and many more (4)] and thereby

enable computer-based analysis of complex biological

systems. We observe that many models reassemble large

biochemical reaction networks. They may have been semi-

automatically generated using data driven approaches,

for example, to construct models from metabolic networks

(5, 6). Models may also prove a theory or concept, for

example, to mathematically describe interactions between

biological entities (7) or generic oscillatory networks of

transcriptional regulators (8).

Many models are published in the Systems Biology

Markup Language (SBML) (9). SBML is a well-defined

file format for the exchange of models between software

systems (10). It focuses on representing biological pro-

cesses as sets of interactions between biological entities. A

resource of openly available and reusable SBML models is

BioModels (11). Release 29 of this repository contains 575

curated and semantically annotated SBML models. Further

resources for reusable models are the Physiome Model

Repository (12) and the JWS Online Model Database (13).

The large number and size of available models require au-

tomated methods and computational tools to support

researchers in identifying common phenomena; exploring

sets of models; and coupling, merging or combining mod-

els. All these tasks require means to compare the character-

istics of models. A variety of similarity measures have been

proposed and implemented, focussing on syntactical simi-

larity, on the evaluation of semantic annotations and on

indexing the reference publications (14). When models are

presented as network graphs, it will be natural to also com-

pare them by network structure (14) and using network

analysis. Methods from this field of research mostly focus

on network diameter and network efficiency (15), on the

topological and dynamical properties that control the

behaviour of the network (16) or on the degree of

tolerance against errors in scale-free networks (17). While

these approaches provide key figure values for the net-

work topology, they do not provide sufficient means to

structurally characterise and compare a set of network

models. Lakshmi and Meyyappan (18) state that it is

possible to regard the composition of network elements

by viewing network graphs as similar, if they share many

common substructures. Consequentially, the problem of

detecting structural similarities within network models

can be defined as a frequent subgraph mining (FSM)

task (19).

In this paper, we present a five-step workflow for the

discovery of structural patterns in biological networks: (i)

import models, (ii) export networks, (iii) create labelled

graphs from networks, (iv) execute graph mining, (v)

visualize and distribute patterns. The workflow implemen-

tation imports a set of SBML-encoded models in graph-

representation. It then extracts all reaction networks

belonging to these models. Based on the network structures

converted into a standard graph format, a mining algo-

rithm identifies frequently occurring patterns. Finally, the

patterns are visualized, and their distribution among the

model set is computed. We show exemplary patterns,

purely structural and also incorporating annotations to the

Systems Biology Ontology (SBO) (20), which were

detected in curated SBML models by means of the pro-

posed workflow. An automated retrieval of common pat-

terns enables various types of investigations, such as ‘What

are frequently used structures to represent biochemical

processes?’; ‘Can we find unique patterns for certain

modelling techniques (theoretical, data driven, or hy-

brid)?’; ‘Do frequent patterns reflect well-known motifs in

Systems Biology, such as functional motifs proposed by

Tyson and Novk (21)?’; ‘Can we cluster a set of models

with regard to occurrences of certain patterns?’.

Furthermore, the detection of reoccurring structures within

a set of biochemical reaction networks is a first step to-

wards structure-based similarity measures.

The next section provides an overview of graph mining

algorithms and tools that are relevant for this work (sec-

tion ‘Materials and Methods’). Afterwards, the workflow

steps are described in full detail (section ‘Results’) and use

cases of the output are exemplified with a set of SBML

models from BioModels (section ‘Exemplary Application’).

At the end of the paper, we discuss how the identification

of patterns by our workflow could contribute to answering

questions such as those referred to above, and we outline

ideas for further investigations (section ‘Discussion’).

Materials and methods

Data mining is a common technique for the extraction of

implicit, non-obvious information from huge datasets (22).

The mining of frequent patterns has its roots in the early

90s, when it had been used to examine the customers’ buy-

ing behaviour. Sales could be increased by detecting pat-

terns in frequent combinations of bought products (23).

We focus on graph-based approaches in data mining, be-

cause our models are represented by reaction networks.
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Approaches for identifying patterns in graphs are, for ex-

ample, based on set-similarity (24), hypergraph analysis

(25) or require specific types of edges and vertices, e.g. the

existence of taxonomic relationships (26, 27). For this

work, we chose FSM (18), which addresses the following

problem: given a set of graphs, find those subgraphs within

the graphs that pass a given frequency threshold (28). To

decide whether a graph is embedded in another, FSM algo-

rithms require subgraph isomorphism testing (18). This is

known as an NP-complete task. Thus, FSM techniques

rely on prior knowledge, heuristics and further domain-

dependent strategies to improve the performance. A variety

of FSM algorithms have already been implemented (19). It

should be noted that most FSM algorithms are used in a

domain-specific manner. For example, an FSM algorithm

exists specifically for molecular databases with structures

of atoms and bonds (29).

For our application domain, we decided to use gSpan

(30). GSpan takes a set of graphs as input, in this case a set

of reaction networks, and produces all frequent connected

subgraphs according to a given frequency threshold, i.e.

gSpan searches for structures that occur in at least a certain

number of graphs within the set. While other algorithms

supply only approximate results, gSpan fulfils our require-

ment for exact results. Wörlein et al. evaluate and compare

the performance of the subgraph miners MoFa, gSpan,

FFSM and Gaston (31). For this purpose, the authors de-

veloped a tool called the ‘Parallel and Sequential Mining

Suite’ (ParSeMiS). ParSeMiS is based on Java and implements

algorithms such as gSpan, Gaston and Dagma. In addition,

Priyadarshini and Mishra (32) described a detailed approach

to graph mining using the gSpan algorithm.

Current network analysis mostly focuses on network di-

ameter and network efficiency (15), on the topological and

dynamical properties that control the behaviour of the net-

work (16), or on the degree of tolerance against errors in

scale-free networks (17). These approaches provide key

figure values for the network topology, but they do not de-

tect actual patterns. On the other hand, biologists have an

interest in classifying models by their function. While

analysing the function of patterns requires knowledge of a

domain expert, frequently occurring patterns can be deter-

mined automatically. Wong et al. (33) discuss the biologi-

cal significance of network patterns and present several

algorithms to identify such patterns. These algorithms are

compared and classified. Searches for frequent patterns

were already performed in the Kyoto Encyclopedia of

Genes and Genomes (KEGG) (34). Hattori et al. (35) de-

scribe a method to compare chemical structures of the

KEGG LIGAND database by identifying their common

patterns. The considered chemical structures are mostly

metabolic compounds. The atoms and covalent bonds are

represented as graphs, where the maximum common sub-

graph is searched for all possible pairs of compounds. The

procedure is applied to detect frequent patterns in 9383

compounds and to cluster these compounds according to

their similarity. Koyutürk et al. (36) propose an algorithm

to discover frequent patterns within a set of metabolic

pathways in the KEGG PATHWAY database. The algo-

rithm performs FSM on the metabolic pathways that are

represented as directed graphs. The authors show exem-

plary results for detected patterns. The computational cost

for the algorithm is reduced by utilizing the sparse nature

of metabolic pathways and unique node labelling. The case

of SBML models is more complex as their networks are

not sparse and their entities are annotated with a variety of

terms stemming from different ontologies.

In the field of business informatics, Li et al. (37) pro-

pose a method to extract occurring subgraphs in a reposi-

tory of business process graphs, compute the distance

between the user’s process model and the extracted pat-

terns, and recommend a ranked list of patterns. By remod-

elling the process graphs to be represented uniformly, they

can even find large patterns or rather the ones only con-

tained in a few networks.

Results

We designed a five-step workflow to retrieve frequent pat-

terns within reaction networks of SBML models (see

Figure 1). To store and access models, our workflow utilizes

a graph database. Network structures are extracted to detect

occurring patterns by means of the FSM algorithm gSpan.

The generated patterns can be visualized using glyphs com-

pliant to the standardized Systems Biology Graphical

Notation (SBGN) (38). Furthermore, the pattern distribution

among all models can be computed. The workflow has dif-

ferent entry points, which can be chosen depending on the

available data. Below, we explain the single steps in detail.

Step 1: Import SBML models

The workflow may either be applied to models already

existing in the graph database MaSyMoS (39) or to a cus-

tom set of models. The published instance of MaSyMos

is shipped together with a database (https://github.com/

FabienneL/BioNet-Mining/tree/master/data) containing all

curated models of BioModels Release 29 (ftp://ftp.ebi.ac.uk/

pub/databases/biomodels/releases/2015-04-16/). Additional

SBML models can be imported into a local MaSyMoS in-

stance. In MaSyMos, the SBML structure is mapped onto a

custom graph structure, which preserves network informa-

tion: the species and reactions are represented by nodes and

their relations are represented as edges between them. A
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species can take the role of a reactant, modifier or product.

Relations between species and reactions are bidirectional.

Of particular importance are the relations ‘a reaction HAS

participants’ and ‘a species IS participant’ in a reaction.

When applying the workflow to a custom set of models, the

representation of networks must be graph-based and com-

ply with the structure available in MaSyMoS. A detailed de-

scription of the mapping is available from (39).

Step 2: Export network edges

Using a query interface for MaSyMoS and the query language

Cypher (https://neo4j.com/developer/cypher-query-language/),

our script retrieves all reaction networks of the SBML

models that are present in the database. The corresponding

Cypher query is shown in Listing 1 and the queried struc-

tures are visualized in Figure 2. By adapting the script, a

custom model set can be used.

Listing 1. Cypher query to export the SBML reaction

networks stored in MaSyMoS. All structures connecting

reactions and species are exported. The output is a set of

three-tuples consisting of the reaction’s identifier, the role

type, and the species’ identifier.

MATCH (reaction: SBML_REACTION)-[edge]->

(species: SBML_SPECIES)

RETURN ID(reaction), TYPE(edge), ID(species)

Figure 1. Pattern identification workflow. Numbered, oval boxes describe workflow steps. Rectangular boxes describe data produced by each step

and taken as an input for the following step. Starting at multiple entry points is possible depending on the available data and format. The first step is

to import models into the MaSyMoS graph database. From there the reaction networks are extracted and converted to a uniform structure. The

converted reaction networks are used as an input for the subgraph mining step to identify patterns. Subsequently, two options to further process the

pattern descriptions are available. On the one hand, images representing the patterns can be generated (output on the bottom left). On the other

hand, patterns can be fed back to the database to create a feature matrix showing the distribution of identified patterns among the models (output on

the bottom right).
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We only query the nodes with their edges and do not in-

corporate further information, such as the associated model,

publication etc. For this reason, unconnected reaction

networks belonging to the same model will not further be

associated with each other. The query result is a set of

typed directed edges with a reaction as start node and a

species as end node. Each result entry is a three-tuple

containing a reaction ID, role type (reactant, modifier,

product) and a species ID. The resulting set of tuples is

provided as JSON output. An example is shown in Listing

2 and visualized in Figure 3.

Listing 2. Exemplary output (JSON) for the query in

Listing 1. It contains a table with columns defining are

action’s identifier, an edge type, and a species’ identifier.

Consequently, the table entries are three-tuples, each repre-

senting an edge with start node, end node, and role type. In

this example the IDs 100233 and 100229 represent the

reactions cdc2k dephosphorylation and cdc2k phosphory-

lation. ID 100186 is the species cdc2k.

{

‘columns’: [‘ID(reaction)’, ‘TYPE(edge)’,

‘ID(species)’],

‘data’:

[

[100233, ‘HAS_PRODUCT’, 100186],

[100229, ‘HAS_REACTANT’, 100186],

. . .

]

}

Step 3: Create labelled graphs

For later analysis, the JSON-file must first be converted

into a graph representation format. We provide this

information in the graph description language DOT.

The associated framework Graphviz (http://www.graph

viz.org/) offers manifold opportunities to process graphs

by providing a collection of tools using DOT-files as input.

We use a few of the tools in later steps of the workflow.

To translate the JSON-file into DOT-format, we con-

vert each three-tuple into a graph with a start node, an

end node and an edge between them. The start and end

node are characterized by their unique identifier and their

node type (species or reaction, stored in a DOT-label). An

edge is defined by the identifiers of its start and end node,

its direction and its type (representing the role, stored in a

DOT-label). As it is more natural for the order of nodes

in the visualization that reactants and modifiers are

ingoing for a reaction and products outgoing, the edge

directions are adjusted. Thus, possible edge labels are

IS_REACTANT, IS_MODIFIER or HAS_PRODUCT. An

example for the entries resulting from the two edges of

the exemplary JSON-file converted into DOT-format is

shown in Listing 3 and visualized in Figure 4.

Listing 3. Exemplary DOT-format after converting the

output (JSON) shown in Listing 2. This transitory format

defines one digraph (directed graph) containing all

exported nodes and edges. For each three-tuple from

Figure 2. Visualization of the queried structures to export SBML

reaction networks from MaSyMoS. The figure shows the three possible

connections between a reaction and a species in MaSyMoS, which are

reflected by different edge types. The associated cypher query in

Listing 1 searches for all these structures.

Figure 3. Visualization of the exemplary query output in Listing 2. Every

output entry in the listing reflects an edge with its corresponding start

node and end node. This figure shows two exemplary edges found in

MaSyMoS that are characterized by the ID of the start node, the ID of

the end node and an edge type.

Figure 4. Visualization of the exemplary query output after conversion

into DOT-format. The figure shows the two exemplary edges that are

defined in Listing 2. In DOT-format the nodes are additionally labelled

as either SBML reaction or SBML species. The edge type in the DOT-for-

mat is also defined as a label. Furthermore, the edge direction and type

for the reactant role is adjusted.
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Listing 2, two nodes and one edge are defined.

Consequently, the created digraph may contain nodes multi-

ple times (shown here, the node with ID 100186) because

one node can be part of several edges. In this example the

IDs 100233 and 100229 represent reactions cdc2k dephos-

phorylation and cdc2k phosphorylation. ID 100186 is the

species cdc2k.

digraph {

100233 [label¼SBML_Reaction];
100186 [label¼SBML_Species];
100233 ->100186 [label¼HAS_PRODUCT]
100229 [label¼SBML_Reaction];
100186 [label¼SBML_Species];
100186 ->100229 [label¼IS_REACTANT];
. . .

}

The resulting DOT-file defines one graph with nodes

and edges from all reaction networks. It should be noted

that the file may contain nodes multiple times, because we

create one entry for a node each time it occurs as a start or

end node in an edge. Consequently, we bundle all con-

nected nodes with their corresponding edges as one graph

each and eliminate redundant nodes. This is possible by

means of a Graphviz tool to split a graph into its connected

components. Then, each connected reaction network rep-

resents its own graph in the new DOT-file and has no re-

dundant nodes anymore. It should be noted that SBML

allows for the definition of interactions between entities as

rules instead of reactions. As MaSyMoS does not build

explicit species-to-species connections based on the assign-

ment rules, we have to neglect rules and only consider ex-

plicitly connected entities. It is thus possible to have more

graphs defined in the DOT-file than models used as input

for the workflow. Such unconnected reaction networks be-

longing to the same model will not further be associated

with each other. Listing 4 shows the final DOT-format for

our example, and Figure 5 visualizes the connected reac-

tion network.

Listing 4. Exemplary DOT-format necessary for the

subgraph mining process created by splitting the digraph

from Listing 3. Here, each connected reaction network is

represented by one digraph and has no redundant nodes

left. In this example the IDs 100233 and 100229 represent

reactions cdc2k dephosphorylation and cdc2k phosphory-

lation. ID 100186 is the species cdc2k.

# connected reaction network 1

digraph {

100233 [label¼SBML_Reaction];
100186 [label¼SBML_Species];
100233 ->100186 [label¼HAS_PRODUCT];
100229 [label¼SBML_Reaction];
100186 ->100229 [label¼IS_REACTANT];
. . .

}

# connected reaction network 2

digraph {

. . .

}

. . .

Step 4: Perform graph mining

The created DOT-file is the input for the graph mining and

the basis for finding frequent patterns in the set of reaction

networks. The frequency of patterns is equal to the number

of reaction networks, in which a pattern occurs. Each pat-

tern is thus counted only once for each network, even if it

occurs multiple times in a model’s reaction network. We

use the implementation of the gSpan algorithm in the soft-

ware tool ParSeMiS to calculate frequencies: Given the

user-specified values min (minimum frequency) and max

(maximum frequency), the mining finds all subgraphs that

occur in at least min and at most max of the graphs. We

call these subgraphs frequent patterns. It does not matter

for the algorithm, how often a pattern occurs within

one graph, only the number of graphs is relevant.

Consequently, the frequencies are values between one and

the total number of graphs in the DOT-file. As already

mentioned, one model may have several unconnected reac-

tion graphs. Therefore, the number of defined graphs can

be higher than the number of models used as input.

As gSpan is an extension based algorithm, it starts with

frequent nodes and iteratively adds one of each possible

edges. The result of the subgraph mining is one DOT-file con-

taining all subgraphs having a frequency within the given in-

terval. Thus, the DOT-file not only contains the largest

resulting patterns, but also each subgraph these are based on.

Figure 5. Visualization of the exemplary DOT-output after post-processing shown in Listing 4. After splitting the one digraph into its connected

digraphs, there are no redundant nodes left. The figure shows the two exemplary edges, but now they are represented as a connected network, be-

cause they share their species node.
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Every graph in the DOT-file is numbered according to the

extension-process. If one subgraph is an extension of another,

they have the same number. For each pattern in the DOT-file

the frequency of its occurrence and the names of the corre-

sponding models are attached as a comment. An exemplary

output is shown in Listing 5 and visualized in Figure 6.

Listing 5. Exemplary pattern mining results (DOT-for-

mat). The output contains for each detected pattern

one directed graph. The digraph numbering, denoted by

‘. . .’, can be discarded. First, all nodes are defined, starting

with ‘Node_0’. Second, the edges are defined. Following a

digraph’s definition, a comment (introduced by #) contains the

number of graphs in which the described pattern occurs. The

following square brackets can also be discarded.

digraph ‘560’ {

Node_0 [label¼‘SBML_REACTION’];
Node_1 [label¼‘SBML_SPECIES’];
Node_2 [label¼‘SBML_REACTION’];
Node_3 [label¼‘SBML_REACTION’];
Node_4 [label¼‘SBML_SPECIES’];
Node_0 ->Node_1 [label¼‘HAS_PRODUCT’];
Node_1 ->Node_2 [label¼‘IS_REACTANT’];
Node_1 ->Node_3 [label¼‘IS_REACTANT’];
Node_4 ->Node_0 [label¼‘IS_REACTANT’];

}#¼>398[, . . .,]

digraph ‘560’ {

. . .

}#¼>436[, . . .,]

. . .

To find those subgraphs within the graphs that pass a

given frequency threshold requires subgraph isomorphism

testing (18). Because this is known as an NP-complete task

(28), the minimum frequency must be chosen carefully. If

the minimum frequency is set too low, the computation

will not succeed due to capacity limitations (memory or

time).

Step 5: Pattern post-processing

The generated patterns may be used in various ways. Here,

we illustrate two possible options to further process them:

the first option is the visualization; the second option is the

computation of frequencies for each pattern per model.

In both cases, the DOT-file is split into multiple DOT-files

each containing one pattern. The name of a DOT-file

comprises the pattern’s frequency and an identifier.

The identifier is used to distinguish between several pat-

terns occurring with the same frequency.

Step 5A: Visualization

The visualization follows the standardized SBGN. Thus,

node and edge labels are expressed by the visualized shape

suggested by SBGN and textual display of node and edge

labels is disregarded. The contour, fill colour and size of

nodes, and the stroke width, direction, arrowhead and size

of edges are set. For each DOT-file an image-file is ren-

dered. The standard image-format is PNG, but other for-

mats such as PDF are supported by the DOT framework.

Step 5B: Pattern distribution

To compute the frequencies of patterns per model, a

Cypher query is generated for each DOT-file. An example

is shown in Listing 6 and visualized in Figure 7. It describes

the graph structure that is queried to get information about

the distribution of the pattern shown in Listing 5. Further,

a restriction is added that nodes are not allowed to be

equal. Subsequently, the queries are executed on the

MaSyMoS database and the results stored as JSON-files,

listing all distinct model IDs, the model names that contain

the pattern, and how often a pattern is present in each of

those models. All JSON-files are then processed to create a

CSV-file representing a frequency matrix. Here, the first

two columns specify the model. The following columns de-

fine the patterns. Each row contains a model ID in the first

column, a model name in the second column, and the fre-

quency of each pattern in the following columns. Thus,

each row can be seen as a feature vector for one model.

Listing 6. Exemplary Cypher code to query MaSyMoS

for the distribution of a certain pattern. The exemplary

pattern here represents a chain with two reaction nodes

and one species node. The species takes a role as product

in the first reaction and a role as reactant in the second re-

action. Furthermore, it is defined that nodes are not

Figure 6. Visualization of the exemplary pattern mining result in Listing 5. The figure shows a pattern with two species and three reactions.
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allowed to be equal. The result is a set of three-tuples, each

containing a model identifier, a model name (stored as at-

tribute in the associated document), and the number of

occurrences of the pattern. The checks for inequality in the

WHERE clause are necessary to exclude cycles.

MATCH (m: SBML_MODEL)–>(d: DOCUMENT),

m-[HAS_REACTION]->Node_0,

Node_0-[: HAS_PRODUCT]->Node_1,

Node_1-[: IS_REACTANT]->Node_2,

Node_1-[: IS_REACTANT]->Node_3,

Node_4-[: IS_REACTANT]->Node_0,

WHERE Node_0<>Node_1 AND Node_0<>Node_2

AND Node_0<>Node_3 AND Node_0<>Node_4

AND Node_1<>Node_2 AND Node_1<>Node_3

AND Node_1<>Node_4 AND Node_2<>Node_3

AND Node_2<>Node_4 AND Node_3<>Node_4

RETURN DISTINCT ID(m), d.FILENAME,

COUNT(Node_0)

AS sum ORDER BY sum DESC

Exemplary application

Using the aforementioned combination of tools and meth-

ods, we exemplarily analysed two datasets on a cluster

node (180 GB RAM, 16 Intel(R) Xeon(R) CPU X5650 @

2.67 GHz).

Dataset

For the pattern detection, we incorporated publicly

available models from BioModels. The stored reaction

networks are encoded in SBML. BioModels contains

two types of models: curated and non-curated. We here

chose only models from the curated branch as those

models can be expected to accurately represent the work

described in the reference publication. Furthermore,

curated models are syntactically and semantically

validated and annotated with ontology terms, and they

comply with the MIRIAM standard (40). Specifically,

we analysed SBML models from two different releases of

BioModels. Release 1 (in the following referred to as

R1) is the first release of the repository. It contains 30

curated models. Release 29 (in the following referred to

as R29) is one of the latest releases. It contains 575 cu-

rated models. We chose these two releases to take the

evolution of BioModels into account. As we decided to

perform subgraph analysis with an FSM algorithm, we

translated the biological reaction network into a graph

representation using the MaSyMoS database. For the re-

action network, the MaSyMoS graph structure distin-

guishes two types of nodes (i.e. labelled species and

reaction) and three types of edges (labelled is_reactant,

has_product and is_modifier).

Quantitative analysis

First, we performed a key figure analysis to calculate the

quantities of node types and edges in the networks. In our

dataset, 557 out of 575 models in R29 contain species, and

499 models contain reactions. The remaining models only de-

fine rules, but do not form a network. The dataset contains a

total of 18 852 reaction nodes and 16 843 species nodes.

Dataset R1 contains only 30 curated models. These mod-

els contain a total of 736 reactions and 425 species. The big

difference in numbers between R1 and R29 are due to the

rapid growth of models, as previously reported (2). On aver-

age, a model from R29 has 30.2 species and 37.7 reactions.

In R1, a model has 14.6 species and 25.4 reactions on aver-

age. For both datasets most models contain 3-11 species. In

addition, most models have 3–12 reactions. However, there

are a few outliers with >100 reactions and species. Figure 8

shows the correlation between species (and their respective

role as reactants, products and modifier) and reactions. As

the figure states, most reactions have two or three participat-

ing species. The most frequently encoded reaction has two

species as reactants and one species as product. The second

most frequently encoded reaction has one species as reactant

and one as product.

Figure 7. Visualization of the structure queried in Listing 6. The figure shows the structure that is queried to get information about the distribution of

the pattern shown in Listing 5. To retrieve the corresponding model identifiers and model names, the queried structure also contains the associated

model and document nodes.
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Exemplary patterns

We identified a subset of patterns shared by at least a cer-

tain number of models. For data set R29, we were able to

identify 37 patterns in total. Each identified pattern is

shared by at least 350 out of 575 models. For the much

smaller dataset R1, we identified 190 patterns. Here, each

pattern is shared by at least 20 out of 30 models.

The visualizations of all exemplary patterns are available

from the project repository (https://github.com/FabienneL/

BioNet-Mining). For R29, the identified patterns contain

between 1 and 6 entities (species or reactions) whereas pat-

terns for R1 contain between 1 and 11 entities. It was not

possible to further scale down the number of models that

share a pattern due to memory limitations.

Common types of reactions

From the quantitative analysis and the statistics shown in

Figure 8, we expected to see patterns having one reaction

and three species (participating as product, reactant or

modifier). Surprisingly, the pattern identification shows

that no such patterns are shared by at least 350 models

in R29 or by at least 20 models in R1, respectively.

Subsequently, we searched for expected structures having

one reaction and three species in the MaSyMoS database.

The specific combination of two reactants as a reaction’s

input and one product as a reaction’s output only occurs in

314 models, despite being the most frequently encoded re-

action class according to Figure 8. Same holds for all other

possible reaction classes with three species for R29 and

R1, respectively. One can conclude that such types of reac-

tions are often used, but are not equally distributed across

models. Instead, many models contain patterns with a cen-

tral species node that participates in several reactions.

Furthermore, the retrieved patterns mostly describe chains

and often contain a single branch.

Species as a reaction modifier

Generally, species in R29 most often take part in a reaction

as a modifier (33 209 times), and less as a product

(23 630) or reactant (25 595). However, only 4 out of the

37 retrieved patterns (R29) contain species that act as a

modifier. One of those four patterns is shown in Figure 9.

A further investigation reveals the unequal distribution of

modifiers among the models. Ten models together count

for 20 620 modifier usages. Among those ten models, five

models are derivations of the aforementioned semi-

automatically created models of metabolic networks (6).

Motifs

Biologists have an interest in classifying models by their

function. Tyson and Novk (21), for example, were inter-

ested in the mechanisms of information processing. They

showed that complex networks could be decomposed into

simple patterns, each fulfilling specific functions within a

cell. These patterns were postulated as common motifs in

biochemical reaction networks. It remains an open ques-

tion how and how frequently these motifs are encoded in a

model. Figure 11 shows the network motifs that were pos-

tulated by Tyson and Novk (21). The structure of Motifs

3-5 can be represented as graphs, in which two species and

two reactions form a cycle. Such motifs can encode, for ex-

ample, the production and degradation of a protein, or

positive or negative feedbacks.

While analysing the function of patterns requires

knowledge of a domain expert, frequently occurring

patterns can be determined automatically. Using our work-

flow, we identified one pattern that represents the structure

of Motifs 3–5; it occurs in 26 models of R1 (shown in

Figure 8. Listing of the node degree for reaction nodes in the dataset R29 of curated models in BioModels Database. For each number of species

(from 1 to 6, and more then 6) participating in a reaction, the figure lists the number of reaction nodes identified with a particular combination of its

species relations (reaction class). The figure sums up smaller reaction classes displayed by X.
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Figure 10). However, this pattern is not among the 37 pat-

terns retrieved using dataset R29. A subsequent query in

MaSyMoS for the exact pattern reveals that the structure

indeed only occurs in 342 models. Surprisingly, the query

retrieved >45 000 occurrences of this cycle in R29. To in-

vestigate further, we ordered the results by model. Again,

the answer is the distribution of the pattern: two models by

Stanford et al. (5) (generated semi-automatically) count for

approximately 10 000 cycles each. Together with our

observations regarding the usage of species as modifiers in

reactions, we can assume that semi-automatically gener-

ated models have a distinguishable network structure.

BioModels contains two prominent examples of such mod-

els (5, 6).

Pattern identification (semantics-aware)

Our workflow currently does not consider semantic anno-

tations and thus cannot provide information about the

intended semantics of reactions and species. Consequently,

we cannot distinguish all of the postulated motifs. For ex-

ample, the pattern describing a simple cycle (cmp.

Figure 10) could be corresponding to Motif 3, Motif 4 or

Motif 5 in Figure 11.

To regard semantics, we adapted Step 2 of the described

workflow. The network extraction was refined to addition-

ally receive the SBO-annotations for the species and reac-

tions. SBO terms define the semantics of model

components, including their physical type, their biological

role in a reaction, or the type of a process (20). SBO-

annotations found in SBML models reflect the biological role

of a species or reaction. Two downsides of incorporating

SBO-annotations have to be considered: first, only 116 out

of 575 (R29) models have reaction networks annotated with

SBO terms. Second, as Alm et al. (42) state, the specificity of

SBO-annotations varies among models. Taken together, the

remaining reaction networks are less complex, allowing us to

retrieve 176 patterns contained by at least 12 out of 116

valid models. Structure-wise, Figures 12 and 13 are equiva-

lent to Figure 10, but they now include semantics, i.e. the

role of each participating species and reaction. Figure 13 is

an identified pattern that describes circular reactions

(SBO:0000176) between simple chemicals (SBO:0000247)

and Figure 13 describes the phosphorylation (SBO:0000216)

or de-phosphorylation (SBO:0000330) of two polypeptide

chains (SBO:0000252).

A brief analysis of all retrieved SBO-based patterns

reveals structures similar to Figure 14. In fact, all but one

pattern with at least four entities contain a combination of

simple chemical (SBO:0000247), biochemical reaction

(SBO:0000176), or phosphorylation (SBO:0000216), de-

phosphorylation (SBO:0000330) and polypeptide chain

(SBO:0000216). The one outsider pattern encodes the

transcription, translation and degradation of messenger

RNA (cmp. Figure 15).

Not all models are annotated with SBO terms and

mostly the annotation level is abstract (42). To consider bi-

ological semantics in more detail, a pre-processing using

annotation propagation (43) or inferring math dependency

maps (44) can be applied. Our approach, however, is solely

based on explicitly encoded information.

Feature matrix

Current approaches for model clustering only incorporate

semantic annotation and meta-information (42, 45). Our

work is a first step towards creating structural similarity

measures for biological models. We hypothesise that these

similarity scores can help to distinguish models, for exam-

ple, to classify them by a certain modelling technique (the-

oretical, data driven or hybrid). Having identified patterns

at hand, it is easy to generate a vector for each model hold-

ing the number of occurrences for each pattern within a

model. Using the approach of term frequency and inverse

document frequency with a vector space model, well stud-

ied in the field of information retrieval, one can draw con-

clusions about the similarity of models based on shared

patterns. However, it is not feasible to use all identified pat-

terns for such a model comparison. Instead, patterns should

be weighted according to their biological significance. It

Figure 9. Species as modifier: This pattern occurred in 351 models of

dataset R29 and shows a species taking part in one reaction as a modi-

fier and as a reactant in a different reaction. A rectangular SBGN PD

glyph with rounded corners states an entity, the SBGN PD square box

indicates a reaction. The modifier role is indicated by a circle attached

to the black line, the reactant role is indicated by a straight line (41).
Figure 10. Cycle: This pattern shows the smallest biologically meaning-

ful cycle with 2 species and 2 reactions. The directed black arrow

defines a species as a reaction’s product (41). This pattern is contained

in 330 models of dataset R29 and in 25 models of dataset R1.
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also seems promising to incorporate information about the

uniqueness of a pattern, i.e. does the pattern contain other

identified patterns itself. Such an analysis would lead to an

approach similar to eTVSM (46).

Discussion

In this paper, we present a five-step workflow for the re-

trieval of frequent patterns in SBML models. The work is a

first step towards a new structural analysis of biological

networks. We utilized the proposed workflow to exem-

plarily analyse reaction networks from curated SBML

models (release 1 and release 29 of BioModels). For exam-

ple, we searched for frequently used structures that repre-

sent biochemical processes. Therefore, we compared

structural patterns resulting from the workflow with key

figure values from a quantitative analysis. While the re-

trieved patterns reflect structures occurring in a high

Figure 11. Functional motifs postulated by Tyson and Novk (21): A grey circle in a motif indicates an interaction that may be eitherþor �. All white

circles in a motif must have the same sign, eitherþor �, and they must be of opposite sign to any black circle in the same motif. FFL denotes a feed-

forward loop and FBL denotes a feedback loop. We grouped these motifs by structure. For example, Motifs 3–5 are grouped as they are all cycles of

two species and two reactions. An analogous group is built by Motifs 9–12. The groups are depicted by alternating colours.

Figure 12. Simple chemical and biochemical reaction.

Figure 13. Phosphorylation and de-phosphorylation of a polypeptide chain.

Figure 14. Exemplary pattern, a combination of simple chemical and

biochemical reaction.
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number of models, the quantitative analysis reveals how

often certain structures occur in general. We found that al-

though one reaction with three participating species is a

frequently modelled structure, no such pattern was re-

trieved in our test run. Instead, patterns were retrieved that

contain a species as a centre node participating in several

reactions. A remaining question is, whether frequent struc-

tures reflect biological phenomena, modelling phenomena

or both. Thinking along these lines, we hypothesise that

the higher number of modifiers and cycles that we identi-

fied in semi-automatically generated models hint at a dis-

tinguishable network structure for certain modelling

techniques. In future investigations, semi-automatically

generated models could be used as input for the workflow

to search for unique patterns in this model set.

Moreover, the presented workflow could be used to test

hypotheses about reoccurring patterns in domain-specific

model sets. In this context, the following questions could

be examined: ‘Is it possible to infer the biological domain

of models by occurrence of patterns in their networks?’;

‘What are characteristic patterns in the class of cell cycle

models?’; ‘Do models from different biological domains

(e.g. cell cycle, apoptosis, transport, metabolism) share

patterns?’

An automated retrieval of common patterns is also a

first step towards creating structure-based similarity meas-

ures for biological models. A number of approaches exist

to compare models based on the encoding format, the

XML tags, or semantic annotations. It is, for example, in-

teresting to study models regarding function, structure and

behaviour (47); regarding their temporal evolution (48,

49); or regarding their dynamics (50). However, as

Lakshmi and Meyyappan (18) state, network graphs can

also be considered similar, if they share many common

substructures. Thus, patterns retrieved from our workflow

can be used as basis for calculating structural similarity. By

generating a vector for each model holding the number of

occurrences for certain patterns within the model, it will be

possible to apply established vector similarity measures.

Based on the calculated similarities, models could then be

classified or clustered regarding common patterns. The

suggested structural approach could also extend existing

methods for grouping biological models. We hypothesise

that this can help to better distinguish models. The consid-

eration of patterns will enable search for models that share

similar structures, improve the mapping of similar models

onto each other (51), and lead to recommender systems

that support the modelling process. In addition to already

existing similarity measures (14), this work will impact the

reuse and reproducibility of scientific modelling results.

Our five-step workflow not only discovers structural

patterns. It also allows to calculate the distribution of pat-

terns among models and to visualize retrieved patterns.

This visualization follows the SBGN standard. By provid-

ing a standards-compliant visualization, the patterns are

more easily comparable to other works, for example to the

already existing SBGN bricks (52). The workflow can be

adapted and extended. It is possible to adapt the pre-proc-

essing steps to enable pattern detection in CellML-encoded

models, or even in other model representation formats.

The pre-processing could also be adapted to better incor-

porate semantic information, such as the knowledge about

mathematical concepts encoded in SBO terms.

In the future, we will incorporate more information

about the role of a reaction (e.g. promoter or inhibitor).

The use of annotations, specifically from SBO, will enable

us to identify motifs more precisely. SBO provides terms

for the functional role of a species or reaction but SBO

terms used for model annotation are mostly abstract. For

example, a species can simply be annotated as a ‘simple

chemical’ (SBO:0000247). Most species and reactions in

our datasets contain such annotations, but some networks

are still not annotated. The consideration of annotation

will also lower the computational costs for the search

for sub-models, because valuable semantic knowledge

can be incorporated to reduce the number of potential

alignments.

Conclusion

The increasing number of published models and the

growing size of encoded reaction networks demand auto-

mated methods for model analysis. Studying biochemical

reaction networks, one is mostly interested in biological

systems that share similar reactions and mechanisms.

These substructures in networks are essential for research-

ers to determine reoccurring parts in models, or to charac-

terise typical sub-modules. This knowledge can then help

to identify common biological phenomena, to explore sets

of models, and to couple, merge, or combine models.

Thus, pattern detection and identification of motifs are

necessary tasks of scientific interest.

In this paper, we present a workflow that addresses the

problem of obtaining common patterns in SBML-encoded

Figure 15. Transcription, translation and degradation of messenger RNA.
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models by applying an FSM algorithm. Our workflow im-

plementation loads a custom set of SBML models into a

graph database and delivers information about frequent

patterns in that set of models. For the pattern detection it

uses a Java-based gSpan implementation. Identified pat-

terns can be fed back into the graph database to retrieve

further information, for example, about the pattern distri-

bution. The presented workflow is openly available and

can be adapted to other model encoding formats. It

can also be extended to support further types of pattern

analysis. When being integrated with available model re-

positories, information retrieved from our workflow can

improve model search, comparison, and provenance.
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