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Abstract – The Internet of Things (IoT), a global Internet-based 

system of computing devices and machines, is one of the most 

significant trends in the information technology area. An 

accepted unified communication approach would be a 

prerequisite for its mass adoption. Semantic technologies 

(Semantic Web) have been advocated as enablers of unified 

communication. However, while there are particular 

advancements in research on application of Semantic Web in the 

IoT domain, the dynamic and complex nature of the IoT often 

requires case specific solutions hard to be applied widely. In the 

present survey, the semantic technology challenges in the IoT 

domain are amalgamated to provide background for further 

studies in the use of semantic technologies in the IoT. 
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I. INTRODUCTION 

At its core, the idea of the Internet of Things (IoT) is 

straightforward – to connect devices to the Internet to be able 

to exchange information anytime from anywhere to any 

device. Ability to obtain autonomous sensory device readings 

is changing the way how business could work and services 

could be provided in future. This trend creates a range of 

unique new services and products in a variety of areas, such as 

monitoring in health sector, logistics solutions, smart homes, 

governing of smart cities and other areas. The Internet as we 

know it today will possibly slowly evolve into a platform 

where classical computer networks and interconnected objects 

are joined together, thus enabling new ways of communication 

and interaction [1]. The Internet will form the backbone of 

global information exchange and provide opportunities for 

companies working in the IT and telecommunications sector to 

leverage the connectivity of both physical devices and virtual 

structures. Studies by Ericsson predict that the number of 

objects in the IoT will reach 50 billion by 2020 [2]. 

An important factor to be considered in the IoT domain is 

the stakeholders involved in data exchange. In the typical 

Internet and WWW use experienced during the past decade, in 

an end-to-end communication sessions, both data providers 

and receivers are human beings [2]. In the IoT, the main roles 

are taken by things or objects that are generating the majority 

of data. For the IoT it means that essential aspects to develop 

and consider are high level information processing, anomaly 

detection, and one-way communication to a specified location. 

Thus, there is a danger of conflicts between IoT requirements 

to the Internet use and “traditional” Internet applications as 

traditional Internet use might become inefficient [3]. To enable 

global machine communication by autonomous information 

gain, discovery, analysis, and proposal, it is crucial to structure 

and group the exchanged data properly. Storage, ownership 

and expiry of data become especially important challenges to 

handle [4]. 

Semantic-oriented approaches have already been introduced 

at the early stages of studying the IoT domain to deal with big 

data, interoperability and achieve actionable knowledge 

handling. Semantic Web technology enables devices to 

“understand” and process data using structured and machine-

readable descriptions of resources [5]. Machine-interpretable 

data descriptions can also show where data originates from, 

how it can be related to its context, who provides the data, and 

what the various attributes of the data are [6]. Semantic 

frameworks help semantically annotate and easily interpret 

information exchanged among IoT devices. In order to make 

and maintain effective business decisions, many organisations 

are leveraging external data sources from Semantic Web, e.g., 

social networks, media feeds, sensor data, or any other generic 

published information [7]. Joined knowledge on semantic 

principles and their application are supposed to improve the 

standardisation and adaptation processes of IoT devices in the 

nearest future.  

In the paper, a systematic literature review has been 

conducted to identify commonalities and open issues regarding 

application of semantic technologies in the IoT domain. In the 

survey, Semantic Web is often used as a synonym of the term 

“semantic technology”, unless other semantic technologies are 

considered. 

The remainder of the paper is structured as follows. In 

Section II, the research method is presented. In Section III, the 

basic concepts regarding application of semantic technologies 

in the IoT domain are described. In Section IV, the open issues 

and challenges found in related works are discussed. Section V 

consists of brief conclusion.  

II. SURVEY METHOD 

A systematic review helps highlight identified research 

challenges and guide scientific work into the direction of 

unresolved problems. The goal of the survey was to review 

existing research to assess the challenges of application of 

semantic technologies in the IoT area. To achieve this 

objective, the following general research questions were 

stated:  
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 How can we assess conclusions in the available research 

on implementing semantic technologies to the IoT and 

summarise subsequent challenges? 

 What are the problems in the IoT domain that can be 

possibly answered by a semantic technology? 

 What are the problems derived from the application of 

each semantic technology? 

The list of eligibility criteria was established to allow for a 

transparent selection process of papers, i.e., to decide if a 

certain article was to be included or excluded in the survey. 

The following mandatory criteria for including the article in 

the survey were defined:  

 The article was published in English in a peer reviewed 

source; 

 The article contained comprehensive conclusions on 

performed reviews or developments; 

 At least one of the following additional criteria should be 

met to include the article to research scope: 

─ The study considered the subject of IoT challenges; 

─ The study considered the subject of semantic 

technology challenges (as these challenges could also 

arise in the IoT domain); 

─ The study considered both IoT challenges and 

semantic technology challenges. 

The following criteria were used for excluding the articles 

from the survey: 

 The article did not give an answer to any of the stated 

research questions (even not partly); 

 It was not possible to derive any information on potential 

future challenges from the article.  

Based on questions that had to be answered during the  

survey and considering the limitations proposed by the 

exclusion criteria, the search concepts and notions were 

defined. These concepts were used as look-up criteria in the 

literature search as follows:  

 (“Semantic Web” OR “semantic technology” OR 

“semantics”) AND (“challenges” OR “problems” OR 

“assessment”);  

 (“IoT” OR “Internet of Things” OR “Internet-of-Things” 

OR “machine learning”) AND (“challenges” OR 

“problems” OR “assessment”); 

 “Semantic Web in IoT” OR “semantic technology in 

IoT” OR “Semantics in IoT”; 

 Other possible combinations or derivations of terms 

described above. 

Systematic review guidelines suggest that searching in the 

title does not always result in all relevant publications. 

Therefore, the abstract or full-text of articles should also be 

considered. Thus, the search look-up criteria were applied to 

the title and abstract of the studies. The search was started with 

the articles available in SCOPUS, one of the well-recognised 

indexes of scientific papers. In SCOPUS search, the filter 

selecting only the document type of “Article” was used. 

Displayed results were ordered by citation number to ensure 

inclusion of papers generally acclaimed by the scientific 

public. Afterwards the same keywords and filters were also 

applied in ACM Digital Library, EBSCOHOST, IEEE Xplore 

Digital Library, SpringerLink, and ScienceDirect (see Fig. 1). 

 

  

 

Fig. 1. Approach to retrieving articles during systematic literature search. 
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The following journals were considered: Semantic Web 

Journal (SWJ); Journal of Web Semantics (JWS);  

International Journal on Semantic Web and Information 

Systems (SWIS);  International Journal of Distributed Systems 

and Technologies (DST); Journal of Network and Computer 

Applications (NCA); and Semantic Web – Interoperability, 

Usability, Applicability (SWIUA). The proceedings of the 

following conferences and workshops were considered: 2014 

IEEE Globecom Workshops (GW); 11th IEEE Int. Conference 

on Trust, Security and Privacy in Computing and 

Communications (ICTSPCC); and International Semantic Web 

Conference (ISWC). Bibliographical data in the number of 38 

preliminary studies were collected and stored in Mendeley 
software platform for further evaluation. An overview of 

described search approach is shown in Fig. 1. 

The systematic literature search and the application of 

eligibility criteria resulted in the list of relevant articles. A total 

of 23 papers published from 2002 to 2016 were collected. Of 

these papers, 7 articles are focused on challenges in IoT area, 5 

items are describing challenges in Semantic Web, and 11 

articles mention challenges of applying semantic technologies 

in the IoT domain. Majority of the used papers (21 out of 23) 

were published in the period 2010–2016 ensuring that their 

content corresponded to the state of the art in the area and was 

relevant for this survey.  

There were two main groups of research works identified 

under the topic of Semantic Web for IoT, namely, (1) 

technical/practical research papers, e.g., development of 

applicable frameworks in the IoT based on semantic/machine-

learning technologies, in some cases including also case 

studies and practical examples and (2) theoretical/review 

papers, e.g., studies of recent applications of Semantic Web to 

the IoT and analysis of ongoing areas of research. For the first 

group, the proposed semantic models and frameworks that 

might be applied to real-life objects and observations were 

analysed. The second group, focusing on existing research, 

also contained survey papers that presented findings of 

different approaches and issues in semantics within the IoT. 

Since the area of semantics in the IoT and IoT as a research 

field, in general, are at an early stage of progression, the 

survey scope contained not only papers directly describing 

semantics in the IoT but also articles on semantic issues with 

no direct relation to IoT and articles on IoT service challenges 

and emerging issues with no semantic research aspect. These 

articles were considered because they might show potential 

challenges in the use of semantic technologies in the IoT. 

Thus, three groups of challenges were identified in the papers 

presented in Table II: 

 Challenges derived from existing surveys in the area of 

IoT with semantics;  

 Challenges derived from developed applications and 

experiments with semantics in the area of IoT; 

 Challenges delineated purely from the field of semantics 

or field of IoT, tendering potential further correlation. 

All three groups are important to derive the challenging topics 

in the application of semantic technologies in the IoT domain. 

Analysing and delineating problem areas of the second column 

of Table I, papers show what problems have emerged during 

the application of semantic data. Combining the issues derived 

from papers of the second column of Table I with the survey 

findings and literature reviews (the first column of Table I) as 

well as emerging issues in particular fields of research from 

the papers of the third column of Table I, a strong backbone 

for the survey paper can be formed, consisting of practical 

existing challenges and theoretical potential areas of research 

and improvement. Altogether, from different columns of 

Table I, 7 papers led to the IoT challenges, 5 papers led to 

Semantic Web challenges, and 11 papers reported on semantic 

technology challenges in the IoT domain.   

TABLE I 

SURVEY PAPER COMPARISON BY THE CONTEXT 

Semantic IoT 
surveys 

Applications & experiments IoT or semantics 

[6], [8] [5], [9], [10], [11],  [12], [13], 
[14], [15] 

[1], [2], [3], [4], [16], [17], 

[18], [19], [20], [21], [22], 
[23], [24] 

III. BACKGROUND  

In this section, we describe the basic concepts that will be 

further used when reporting on different groups of challenges 

found in the selected papers. We describe the concepts behind 

the semantic technologies, semantic language and reasoning, 

current state of IoT, and data exchange in the IoT.   

A. Concepts behind Semantics Technologies 

Semantic Web is augmenting the human-understandable 

part of the Web with structured knowledge that is available for 

machines to process. Usually services of today’s Web interface 

require human intelligence for perception of stored data. 

However, semantic technologies require large data storage 

units that machines can independently access, process and act 

accordingly [16]. It is predicted that successful applications of 

semantics on computers will create new technologies that use 

human-readable and structured machine data to assist both 

humans and machines, also resulting in development of new, 

previously non-existing services [17]. Increasing machine 

autonomy and strong demand for technology in daily life 

explain why many areas of computer science have been 

involved into development of Semantic Web over the years. 

Computer science more and more focuses on artificial 

intelligence. Databases need to be optimised for structured data 

storage, ensuring transactions and enabling query 

communication. System sciences provide mobility and 

reliability of semantic technologies. Existing libraries and 

documents are reengineered, transformed and indexed to 

propose a format that can be easily processed by computers.  

Semantic communication includes converting normal one-

dimensional “raw” data into rich “polyhedral” information 

units [16]. For instance, a measured value of 23 can be 

received at a communication end-point as a unit with specified 

data type “water temperature”, unit of measure “°C”, exact 

time “12:45:32”, etc. This transformation demands high level 
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machine processing in real time and effective data storage 

methods. Computers have to be able to access needed 

resources at any time. Consequently, the resources have to be 

open and similarly configured to ensure fault tolerance. 

Networks that use semantic technologies should be available 

for on-demand modification. Networks should also support 

adding or removing devices without communication 

downtime. All mentioned factors show that a vital component 

for Semantic Web discipline is ensuring interoperability [17]. 

Two approaches, as defined by [9], can be used to reach 

interoperability: full standardisation and partial standardisation 

combined with artificial intelligence solutions. Standardisation 

of all developed and developing technologies seems 

improbable as it requires worldwide agreements between 

manufacturers and research groups. Partial standardisation 

combined with a particular level of intelligence provided by 

semantic recommendations (required formats/languages) is 

more plausible. 

B. Semantic Language and Reasoning 

The Semantic Web concept is largely based on the Resource 

Description Framework (RDF), which uses Internationalised 

Resource Identifiers (IRI) to enable linking and merging of 

relations between units from multiple resources in the web. 

This method was first proposed by Berners-Lee in [25] and 

included in Linked Data concept. RDF is a platform-

independent development that offers different level 

information representation in a consistent manner. However, 

by default, information offered by RDF is generic. More 

advanced languages have been developed on top of RDF to 

add service or application specific features to base RDF. Once 

the information is structured in RDF, a query processor engine 

can be used to find specific knowledge or information. Search 

can be executed in a simple way similar to keyword search in 

regular web, or can be performed in an advanced way by 

defining document content in data trees within documents. 

Apart from representation formats, vocabularies and 

ontologies are vital for structured information transfer in 

Semantic Web. Vocabularies define relationships and terms 

used to describe and represent an area of interest. Ontologies, 

in addition to dictionaries, allow for more expressiveness of 

the concepts [18]. Ontologies are suitable for sharing, 

organising and representing knowledge in a formal way [10]. 

RDF Schema, OWL and similar semantic tools offer 

vocabulary for representing and designating RDF data. Ideally, 

a universal ontology could be used to establish variable formal 

vocabulary to share between communicating entities, 

especially in the artificial intelligence area of discourse [19]. 

However, in practice, there is a movement towards a definite 

set of ontologies that are agreed upon in particular domains 

instead of only a universal ontology.  
Semantic reasoning is another paramount concept in 

Semantic Web. Reasoning is deduction of facts explicitly not 

described in a vocabulary or knowledge base using rules or 

definitions [18]. By means of reasoning, actual machine 

knowledge can be achieved. Reasoning and inferences have a 

key role in the development and integration of semantic 

ontologies [19]. A reasoning engine (also called a reasoner) is 

a software tool that executes reasoning based on rules. Rules, 

in turn, are based on first-order predicate logic or description 

logic (DL) to derive conclusions from a sequence of statements 

(premises) [10].  

C. Current State of IoT 

During a presentation for Procter & Gamble in 1999, a term 

IoT was proposed by Kevin Ashton. The idea behind IoT was 

to enable computers to send information about the current state 

of physical world objects to the web [11]. Object identification 

was implemented using radio-frequency identification (RFID). 

Today the term IoT is used to refer to global network of 

interconnected devices or “things” by means of vast Internet 

technologies [1]. RFIDs, sensors and actuators, machine-to-

machine devices are leveraging into increasing potential of IoT 

networks for new service and business opportunities. The 

conceptual flow in IoT is similar to a human-usable Internet 

concept. In IoT, the main data producers and consumers are 

things or devices [20]. IoT components must possess the 

following abilities: (1) be identifiable, (2) be able to 

communicate, and (3) be able to interact [1].  

In most of current implementations, devices that combine 
aforementioned requirements generally can only operate 

within boundaries of a network of the same producer and do 

not possess sharing capabilities between different vendors and 

their platforms [10]. Knowledge can be utilised only for a 

particular domain in a particular case of appliance. Full 

potential of IoT could be achieved when devices are taught to 

communicate and collaborate with all accessible devices, 

regardless of vendor or producer. 

D. Data Exchange in the IoT 

Before discussing ubiquitous data exchange in IoT, the five-

layer technical architecture of IoT has to be introduced (see 

Fig. 2). The bottom layer or perception layer (also called edge 

layer) can be identified as a hardware or physical layer. This is 

where sensors are used to collect data. The next, access 

gateway layer, together with the network layer is used to 

provide and manage communication between objects and 

systems in the IoT environment. Further, a middleware layer 

provides a dynamic interface between hardware and 

applications. The top layer is an application layer that allows 

services or applications to integrate or analyse the received 

information from lower layers. This is an enhanced 

architecture of current IoT paradigm that was initially built as 

only a three-level architecture, with the first, third, and fifth 

layers present [20]. 

The main goal behind IoT is to create context awareness by 

enabling the devices, applications and services to respond 

dynamically to changes or requests from their environments 

[21]. In flexible IoT systems, data are delivered between 

message brokers. Brokers are server-side software components 

that exchange messages between a message transmitter and a 

receiver. Exchange solutions may contain built-in message 

routing based on content, as well as message summarisation 

and extraction [10]. Describing IoT data taxonomy, Quin et al. 
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in [2] classify characteristics of IoT data and propose the 

following three categories: data generation, data quality, and 

data interoperability. Data generation considers the aspects of 

different rate of data generation in the IoT, foreseeable 

increase of data scalability in the IoT with more and more 

devices connecting to networks, mobility and dynamicity of 

IoT data, and heterogeneity of data resulting in varying 

formats using different vocabularies. Data quality concerns 

uncertainty as the received information might be missing 

certain attributes; redundancy as multiple sensors repeat the 

readings at the same locations; ambiguity as data interpretation 

can differ for various data consumers; and inconsistency 

factors such as inaccuracy and data instability over time in the 

changing environment. Data interoperability contains issues of 

incompleteness and proposes semantic aspects of data in the 

IoT as a method to progress towards interoperability. 

The idea of Information-Centric Networking (ICN) has 

emerged as a possible evolution path for future Internet and 

IoT. This method assumes that data resources are named based 

on content of the information rather than IP address as in 

standard networking protocols. Thus, it offers good integration 

possibilities with developing IoT applications [10]. It is 

predicted that cloud computing, social networks, and big data 

research areas may have a strong impact and lead the way of 

future IoT developments [20]. 

IV. SEMANTICS IN THE IOT: MAIN CHALLENGES 

Challenges of IoT are related to the possibility to consider 

relevant issues of the physical world, ensuring technical 

interoperability from technologies to deliver information, and 

ensuring a possibility for the information to be understood and 

processed. In this section, the challenges identified from 

related work which are related to semantic technologies in the 

IoT are organised in the following six groups: scalability and 

flexibility; standardisation and reusability; high level 

processing; data quality; data confidentiality and privacy; and 

interpretation and synthesis. Table III presents the groups of 

challenges and the studies that at least partly address them. The 

subsections of this section offer a brief review of each group of 

challenges and identify solutions (expected and provided) to 

address these challenges.  

TABLE II 

DISCOVERED GROUPS OF CHALLENGES 
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Gubbi et al., 2013 [4]       

Gyrard et al., 2014 [21]       

Miorandi et al., 2012 [1]       

Qin et al., 2015 [24]       

Qin et al., 2016 [2]       

Tsai et al., 2014 [20]       

Weber, 2010 [22]       

Euzenat, 2002 [17]       

Fürber, 2016 [16]       

Martinez-Rodriguez, 2016 
[18]       

Noy, 2004 [19]       

Zaveri et al., 2014 [23]       

Barnaghi et al., 2012 [6]       

Christophe, 2012 [13]       

Darbari et al., 2015 [15]       

Kiljander, 2014 [11]       

Kotis et al., 2013 [9]       

Maarala et al., 2016 [10]       

Perera et al., 2014 [8]       

Perera et al., 2012 [3]       

Pfisterer et al., 2011 [5]       

Song et al., 2010 [14]       

Wang et al., 2012 [12]       

 

 

A. Scalability and Flexibility 

Properties of highly dynamic and distributed systems 

consisting of a large number of communicating objects 

indicate that scalability is to become one of major research 

problems and requires development of flexible and extendable 

solutions. The research in this area has to consider the 

following issues: automated (or semi-automated) annotation of 

available resources, semantic association discovery and 

analysis (resource connection or activation), and efficient 

solutions to create, analyse and explore linked IoT data of 

various resources [6]. Some studies in the IoT domain address 

the rising problem of ensuring IoT scalability [21]. Using 

known P2P (peer-to-peer) methods for IoT systems promises 

good scalability possibilities [22]. For applications utilising 

semantic notations, some data engineering has been done to 

 - Issue is mentioned and analysed 

 - Issue is mentioned, addressed and solution proposed 

Fig. 2. Five-layer architecture of the IoT. 
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meet the scalability requirements in IoT. Pfisterer et al. in [5] 

proposes a SPITFIRE prototype that enables scalability by 

avoiding registry of semantic entities. Research conducted by 

Wang et al. [12] describes the idea of providing IoT 

information through standard service interfaces that resonates 

with service-oriented computing paradigm, and provides 

scalability respectively. The idea of “sensing as a service” 

represents a scalable way to access the sensor data through 

standard services. Recent work by De et al. focuses on a 

semantic description model for services exposed by the IoT 

resources [26]. Scalable search by means of distributed 

framework of nodes is proposed in [13], hence ensuring 

satisfactory management mechanisms for IoT data networks.  

B. Standardisation and Reusability 

Standardisation is a vital area of concern in any data 

engineering field as it infers stable quality levels over time and 

steadiness against unexpected faults. Technical standards are 

based on consensus of different parties involved in 

development or production of a given service or device. It is 

essential to define and follow a standard specification guide so 

that further enhancements can be added to existing solutions 

without significant effort [8]. The idea of standardisation of 

IoT interconnected devices on a global scale is improbable at 

this point; however, certain regulatory approaches are aiming 

at standardisation [22]. The European Commission provides 

open framework guidelines for development of IoT devices for 

ensuring that such principles as verticality, ubiquity, and 

technicity are well aligned. However, they only apply to 

Europe and by no means can be considered a global measure. 

Tsai et al. in [20] mentions global standardisation as an 

important issue for future IoT development. A possibility to 

avoid standardisation problems is the use of extending 

standards with adapters to other standards. However, certain 

drawbacks take place. Firstly, one standard has no direct 

control over other standards, which means that changes for one 

standard will not automatically be propagated to other 

standards. Secondly, in order to support interoperability among 

several standards, a large number of adapters have to be 

developed, which is clearly inefficient [14]. There are distinct 

missing standardisation activities related to data models, 

ontologies, and data formats to be used in IoT applications for 

service-level interfaces and protocols [1]. Machine-to-Machine 

Measurement (M3) framework is offered to supplement 

existing semantic standards by adding common format, 

nomenclature and methods for data interpretation [21]. 

Semantic approach is aimed at resolving the issue of lack of 

standardisation by introducing common ontologies, data 

models, and vocabularies; however, currently the application 

methods are non-unified, complicated, and require further 

improvement. Evolution of Semantic Web has produced a 

large number of semantic models and frameworks that do not 

always possess a means to be easily applied and tailored for 

the IoT paradigm. Such a situation is a great playground for 

experienced users, but for beginners it could lead to 

misunderstanding of the benefits of structured data 

representation [18]. Developing comprehensive technical 

architecture supports the goal of defining a common data 

handling structure in the IoT. Kiljander et al. [11] propose and 

evaluate particular semantic interoperability architecture. 

The main contribution of RDF and OWL semantic notations 

and ontology aside from standardisation is that they also 

support information reusability [11]. Ontologies contain 

several generic key components such as relations, classes, 

attributes, individuals, function terms, restrictions, rules, 

axioms, and events [8]. These items can be easily transferred 

to similar ontologies or modified to suit specific needs, thus 

ensuring reusability of shared knowledge and contributing to 

interoperability. As a separate metric of assessing Linked Open 

Data quality reusability factor is taken into account in [23]. For 

instance, in [5], SPITFIRE model supplements functional 

SENSEI model by searching for already existing concepts for 

reuse and datasets to establish linkages.  

C. High Level Processing 

Large scale of resource heterogeneity and distribution in IoT 

entails a need for notable computational power. Full potential 

of IoT will be leveraged by transforming low-level data into 

high-level data seamlessly and in a comprehensive way [6]. 

Low-level data are single observation and measurement units 

captured by sensors or other devices. Usually IoT data 

consumers, either humans or machines, are not interested in 

unit measurements but rather in high level contextual meaning 

of data. Such high-level abstractions should be machine-

interpretable for computers and human-understandable for 

humans. High-level knowledge collection, transfer, data 

extraction and modification in a specific domain for certain 

applications are demanding the largest part of processing 

resources. Currently there are only some solutions that address 

this problem. For instance, the annotation tool in Sense2Web 

creates an opportunity for users to annotate sensor data such as 

resource, entity, and service descriptions [2]. Processing and 

analysing semantic data sets for gaining information and 

enabling advanced communication with IoT devices directly 

depend on effective querying and interaction processing 

between message brokers [6]. Mature working solutions can 

already work with large-scale semantic descriptions but a 

changing environment of IoT demands for even higher 

processing abilities. Current mechanisms for querying data in 

semantic technologies are based on SPARQL. Engines tailored 

for a sensor streaming environment of IoT include Streaming 

SPARQL, SPARQL Stream and others. All these systems add 

an extra window for operational RDF stream processing [2]. 

Experimental work by Qin et al. [24] shows a good result on 

disseminating Linked Data streams to construct effective user 

queries. Qin et al. promise that further experimentations will 

include more sophisticated user queries such as JOIN. 

Research shows a promising opportunity to support high levels 

of data consumption needs in the IoT. In [11], Kiljander et al. 

propose another solution of engine that enables efficient 

processing of SPARQL subscriptions. One more option is to 

introduce distributed computation in order to reduce 

communication overload, termed in network-processing. The 

idea originates from wireless sensor networks that are set up to 
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perform local measurements [1]. Darbari et al. in [15] develop 

a granular computing concept that can be used to dynamically 

cluster information about urban traffic using OWL semantic 

language in IoT. 

Transaction handling is another open issue related to data 

processing in the IoT [2]. When data is being updated across 

thousands of devices within a network with high frequency and 

different update policies, it becomes difficult to define what a 

transaction is.  

Immense data amount generation, although not directly 

falling under processing categorisation, is also a predictable 

result of emerging field of IoT [4]. Large data amounts call for 

intelligent data storage solutions for analytics, monitoring, and 

actuation. An expected result of smart analytics is automated 

decision making by means of machine-learning methods based 

on evolutionary algorithms, neural networks and similar 

solutions, all of which demand data on-the-go from various 

storage sources. 

D. Data Quality 

High level of data quality provides accurate and timely 

information to manage IoT related services and ensures 

accountability. It allows measuring service effectiveness and 

prioritising resource usage. IoT presents an architecture where 

data is the key factor in both the perception layer and the 

application layer (see Fig. 2). Data in this case are an actual 

value perceived by sensors or others devices and passed along 

for processing; therefore, it is essential to apply the best data 

quality practices immediately in first steps in data processing 

in IoT. 

Semantic Web development has produced a high volume of 

data being published on the web as Linked Open Data [23]. 

Some semantic description models such as the W3C SSN 

ontology offer attributes to describe qualitative aspects of data 

[6]. Analysis of such data quality reveals that these data often 

are not consistent [23]. As stated, data extracted from partly 

structured or non-structured sources such as DBpedia might 

contain inaccuracies and misrepresentations. For human 

interpretation, inaccurate data might be sufficient. For 

machine-learning or knowledge-dependent application, 

however, such data might be unacceptable.  

While many methodologies and frameworks exist for 

assessing data quality and deriving appropriate conclusions 

and suggestions for improvement, the Web of Data contains 

innovative aspects that are not always covered by existing 

mechanisms. As data volume increases, inconsistency and 

redundancy become troubling issues. Inconsistent data 

detection for distributed networks becomes even more 

challenging [2]. Quality of observations and measurements can 

vary over time due to environmental changes, device faults, or 

system downtimes [6]. Possible methods to detect errors and 

analyse data in accordance with the defined quality 

requirements include anomaly detection and filtering, as well 

as reliable semantic description filtering. Mechanisms of 

verifying quality and reliability have to support selected 

semantic approaches. 

Several studies focus on quality aspects of semantic 

technology and IoT data combined, implying that this issue is 

of current interest of academic community. Zaveri et al. [23], 

[27] formalise terminology related to data quality and provide 

a framework for comparing quality assessment approaches and 

tools. Regarding quality metric definition and validation of 

tools of quality assessment, it has been concluded that 

Flemming’s data quality assessment tool has covered most of 

defined quality dimensions [27]. Recent study by Fürber [16] 

offers another data quality principle classification with a 

deeper focus on ontologies and links between them. It is 

proposed to segregate data aspects by means of quality of data 

source, raw data, semantic conversion, and linking. Survey on 

context-aware computing by Perera et al. [8] names such 

quality criteria as quality of physical sensors, context data, and 

delivery process.   

E. Data Confidentiality and Privacy 

By means of big data analytics and web mining techniques, 

behaviour of user can be analysed to improve structure and 

content of offered services. The helping a user to feel more 

comfortable and enabling intuitive browsing uncover methods 

and approaches of utilising user data for malicious means, thus 

threatening user privacy and confidentiality. Determining 

threatening behaviour contexts is a ceaseless challenge. Large 

networks consisting of autonomous heterogeneous devices as 

in IoT transfer large amounts of valuable information. These 

kinds of systems will not only own and record information 

about users but will also produce sensitive data that are rich in 

context [20]. Health-care is an exquisite field of interest for 

IoT applications, but the lack of appropriate methods for 

ensuring privacy and sensitive information has hindered the 

adoption of IoT developments in health-care [2]. Moreover, in 

IoT wireless communication will play an important role. 

Adoption of wireless medium as a standardised environment 

for data exchange may pose new threats in terms of privacy 

violation. Hence, such risks should be mitigated within 

ongoing research to ensure stable development of IoT 

paradigm. Measures providing the network and device 

resilience and means of interception of attacks, data 

authentication, access control and client privacy have to be 

established [22]. IoT attributes such as globality, technicity, 

ubiquity, and scalability have to be covered by the proposed 

solutions. Security and privacy need to be protected at all IoT 

architecture layers [8]. 

Certain studies primarily focus on privacy challenges of IoT 

and imply introduction of legal frameworks, as the study by 

Weber [22]. Resembling challenges of standardisation, the 

proposed framework would call for consensus between 

involved parties to become fully operational as well. 

Regarding privacy the following open challenges can be 

identified [2]: defining general model of privacy in IoT, 

development of innovative enforcement methods, and 

development of methods that are able to balance the need for 

confidential data for personalisation needs without 

overexposing the sensitive information. Mobile reasoning can 

be used to preserve privacy [10]. Survey papers on IoT vastly 
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cover the topic of privacy in future Internet networks, as in [1] 

and [2]. Some on-going initiatives of IoT systems consider 

privacy and confidentiality concerns within the development of 

pervasive context aware IoT applications. 

F. Data Interpretation and Synthesis 

Providing smart objects with interpretation and analytics 

methods to process and evaluate events in their surroundings is 

important for building the concept of intelligent machines [6]. 

Semantic descriptions serve the purpose of transforming large 

amount of observed and perceived data created by users and 

machines into high-level concepts that are meaningful for 

establishing automated decision making processes. However, 

the non-human perception contributes to existing pool of 

challenges in IoT. Similar to problems faced by the artificial 

intelligence research community, in IoT the challenges are data 

integration and amalgamation from different sources, rules of 

data aggregation, defining borders and thresholds, as well as 

describing events, actors and objects. Solutions are needed to 

integrate data from various environments, register and act upon 

anomalies (including errors) and patterns for further fusion of 

new knowledge based on learnt rules [6]. Interpretation 

challenge is a vaguely noticed topic. Some studies indicate this 

challenge, but propose no solutions. From Qin et al. [2], it can 

be derived that interpretation problems can be eliminated by 

strong semantic annotations. Similar ideas are also expressed 

in [27]. Tsai et al. [20] predict a future framework of IoT that 

includes an interpretation layer as a separate mechanism. 

V. CONCLUSION 

The goal of the survey has been to identify commonalities 

and open issues regarding the application of semantic 

technologies in the IoT domain. The paper has provided an 

analysis of 23 sources by organising the revealed challenges in 

6 groups, namely: scalability and flexibility, standardisation 

and reusability, high level processing, data quality, data 

confidentiality and privacy, and data interpretation and 

synthesis.  

Merging semantic solutions with different aspects of IoT 

proves to be a difficult task. The emerging issue of scalability 

is detected in most of the reviewed publications as it reflects 

the ever-expanding nature of IoT network. Semantic service-

oriented approach is a proper solution that promotes increased 

scalability for IoT and requires automated dynamic 

composition mechanisms. Standardisation and reusability can 

be achieved by introducing common frameworks and reference 

models, but cooperation of vendor and regulatory parties is an 

essential topic here. Real-time data stream exchange and 

handling of the immense data amount are not supported by 

existing semantic engines, thus creating a need for more 

efficient mechanisms to be implemented for the IoT paradigm. 

Approximately half of articles within the survey scope refer to 

data quality as an issue for semantics in IoT. Defining quality 

metrics is a key task for future IoT solutions. Data 

confidentiality principles are also often mentioned. By 

increasing the number of sensors and devices in IoT networks, 

the amount of sensitive data transferred rises as well. Some 

works offer a deep study of privacy issues and introduce a 

legal framework as a reference model. Data synthesis and 

interpretation are an underlying topic for developing IoT 

networks.  
The present survey shows that many aspects of semantics 

application in the IoT domain are not yet resolved and call for 

continued research and development. Most of the identified 

issues are related to the dynamic and pervasive nature of IoT. 

The challenges are outlined here to encourage further research 

in the application of semantic technologies in the IoT domain.  
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