

Complex Systems Informatics and Modeling Quarterly

CSIMQ, Issue 10, March/April 2017, Pages 21–37

Published online by RTU Press, https://csimq-journals.rtu.lv

https://doi.org/10.7250/csimq.2017-10.02

ISSN: 2255-9922 online

Value-Based and Context-Aware Selection of Software-Service

Bundles: A Capability Based Method

Jānis Grabis
1*

 and Kurt Sandkuhl
2*

1Institute of Information Technology, Riga Technical University, Kalku 1, Riga,

LV-1658 Latvia
2Faculty of Computer Science and Electrical Engineering, Business Information

Systems, University of Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany

grabis@rtu.lv (orcid.org/0000-0003-2196-0214),
kurt.sandkuhl@uni-rostock.de (orcid.org/0000-0002-7431-8412)

Abstract. In many application areas, vendors offer to their clients combinations

of software products and services, which can be considered as software-service

bundles. The clients select a combination of software product and associated
service best suited to their individual requirements and circumstances. The

bundle usually has to be configured by the vendor to fit the specific situation of

the client. When circumstances change, the software-service bundle or its
configuration need adaptation. The article proposes a method helping clients to

select the most appropriate combination or configuration. The method is based

on information sharing between the vendor and client and also supports the
continuous improvement of the solution in response to changing circumstances.

The method applies principles and techniques of the Capability Driven

Development to specify performance objectives and contextual factors affecting

delivery of a software-service bundle. Application of the method is shown using
an illustrative case of a data processing service from utility industries.

Keywords: Software selection, capability, evolutionary development, software-

service bundle.

1 Introduction

In many application areas, vendors offer combinations of software products and services that

provide packaged offerings for specific applications. Such software-service bundles are provided

by vendors as solutions to their clients. Depending on the client individual requirements and

circumstances, the solutions have different configurations with regards to functionality provided.

The configurations also differ by costs borne and benefits attained by clients. In order to nurture

long-term vendor-client relationships, both parties are interested in rightsizing the service

offering to maximize benefits [1].

*
 Corresponding author

© 2017 Jānis Grabis et al. This is an open access article licensed under the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0).

Reference: J. Grabis and K. Sandkuhl, “Value-Based and Context-Aware Selection of Software-Service
Bundles: A Capability Based Method,” Complex Systems Informatics and Modeling Quarterly, CSIMQ,

no. 10, pp. 21–37, 2017. Available: https://doi.org/10.7250/csimq.2017-10.02

http://creativecommons.org/licenses/by/4.0
https://doi.org/10.7250/csimq.2017-10.02

22

Balancing of client needs, functional capabilities, and associated development costs have long

been acknowledged in the software engineering community. The Boehm’s spiral model [2] for

software development emphasized that in every iteration before adding new features a cost-

benefit analysis should be conducted. Taudes et al. use option pricing models to evaluate

information technology investment decisions and apply these models in software upgrading case

study [3]. These early works focus on individual software applications rather than on software

families and related services. Software product line engineering [4] investigates the problem of

constructing the software solutions efficiently from the vendor perspective. Clients on the other

hand are interested in the most feasible and efficient solution meeting their specific

requirements. This problem is investigated in research on software selection [5] though this

research mainly takes into account information available to a client, i.e., the vendor perspective

is neglected. However, vendors have a wealth of information about their software’s use by

different clients [6]. This information could include contextual information about specific

operating circumstances of individual clients as well as information dependencies between

specific configurations of the solutions and the achieved performance. It is argued that by

sharing historical context and performance data vendors and clients can collaborate for finding

the right configuration for every client. This way every client would be provided a configuration

appropriate for its operating context as well as estimates of expected performance of the solution

[7]. From a service science perspective, the collaboration between client and vendor (i.e., co-

creation of value) is considered as precondition for successfully implementing the service part of

software-service bundles. Data and knowledge sharing has been shown to create substantial

mutual benefits by suing techniques such as vendor managed inventory [8] and best practice

based configuration of enterprise applications [9].

In order to enable the aforementioned approach, a framework for defining contextual

information and performance objectives is required. Recently, capability driven development

(CDD) has been proposed as an approach for ensuring that solutions can be delivered in different

contexts at the desired level of performance [10]. The approach presumes that rather than

providing a simple business solution the vendor possesses certain capabilities and is able to

provide such a capability to its clients facing different operating circumstances. It is a model

based approach and encompasses three development phases: 1) capability design explicitly

defines performance goals, context factors affecting capability delivery, and context-dependent

capability delivery solutions; 2) capability delivery phase concerns monitoring of context and

performance data and adjusting the solution in response to changes in these data; and 3) feedback

phase provides information for updating of the initial design.

The objective of this article is to elaborate a CDD based method allowing collaboration

between vendor and client in selection of the right configuration of software-service bundles and

continuous improvement of the selected configuration. It is assumed that a vendor has multiple

clients. The clients share usage information about the software-service bundle. In the case of

preparing a bundle for a new client, this information is used to create a decision-making matrix

for selecting an appropriate configuration for this new client. The new client usually starts with a

minimum satisfactory configuration; performance of this configuration is continuously

monitored and if necessary the client upgrades its configuration which here is referred to as

evolutionary development in analogy to evolutionary software development [11].

The main contributions of the article are: 1) combination of vendor and client perspectives in

an information sharing based method for selection of software-service bundles; and 2) selection

of software-service bundle as an interplay among contextual data and performance objectives

(i.e., selection is made in a context-aware performance driven fashion). The rest of the article is

organized as follows. Section 2 provides overview of the method. Section 3 elaborates stages of

the evolutionary development. The application example is provided in Section 4. Related work is

reviewed in Section 5. Section 6 summarizes findings and future work.

23

2 Method Overview

The evolutionary development method for software-service bundles is based on the CDD

approach and uses the capability model underlying the software-service bundle as a starting point

for providing appropriate configurations to clients.

2.1 Problem Statement

The vendor offers its clients a software-service bundle S. The software-service bundle consists of

a software product, know-how and supporting services ranging from helpdesk to business

process outsourcing. S is designed in a way to deliver desired performance in different contextual

situations, i.e., the vendor possesses the capability of providing the software-service bundle.

S is provided in one of N configurations ,...,i NO O and the configurations differ by their price

and other characteristics. Delivery of S depends on M context factors
1,..., MC C and its

performance is measured by L key performance indicators
1,..., LK K . Combinations of values of

the context factors yield a context situation describing specific solution delivery circumstances.

It is assumed that certain configurations provide better performance for specific context

situations than other, i.e., they are better suited for these context situations. For instance, a

configuration including an outsourcing service works better in the case of highly variable

demand for troubleshooting services.

There are P clients using one of the configurations. It is assumed that existing clients have an

incentive to share anonymized values of context factors and key performance indicators (KPIs)

during operations of the software-service bundle.

Figure 1 illustrates the software-service bundle selection problem. The illustration shows that

the vendor maintains a set of predefined configurations, which are used by the existing clients.

The usage information from the clients is accumulated in the performance and context data

database. A new client together with the vendor identify his context situation and use it to select

an appropriate configuration.

Figure 1. Contextualized and performance driven software-service bundle selection problem

Two decision-making challenges are: 1) to select appropriate configuration for a new client;

and 2) to upgrade configurations used by existing clients in the case of changing circumstances

or unsatisfactory performance. In the former case, selection is performed by matching a context

situation of the new client with context situations supported by the vendor of the software-

service bundle. In the latter case, an existing client switches from one configuration to another to

adapt to the changing circumstances.

24

2.2 Evolutionary Development Process

The aforementioned challenges are addressed following an evolutionary development process

(Figure 2). A vendor uses the CDD approach [10] to develop a capability model. The model

specifies capability delivery goals, context, and solutions (i.e., software-service bundles and their

appropriate configuration) for capability delivery offered to clients (see Section 2.3 for further

discussion). The capability model covers all configurations supported by the vendor.

Relationships among context situations and configurations are described in a capability support

matrix (CSM). The matrix indicates configurations suitable for a particular context situation. It is

used by the vendor and clients to find appropriate solution for client needs. CSM is developed on

the basis of historical data analysis or according to judgment of the vendor. CSM defines

whether a configuration meets client requirements while a service-software bundle (SSB)

selection model addresses business value concerns. It evaluates expected returns from using a

particular configuration. These expected returns are computed according to the goals specified in

the capability model.

Upon engaging a new client, its typical context situation is assessed and the most beneficial

configuration supporting this context situation is selected. The most beneficial configuration is

evaluated using the SSB selection model, which is configured according to the needs of the new

client by weighting his most important selection considerations. The selected configuration is

provided to the client. It is used for capability delivery and delivery performance is monitored

using the indicators defined in the capability model. If performance targets are not achieved or

context values venture outside the defined context element range, the capability delivery solution

is adjusted. Potential adjustments are: 1) selection of a more appropriate configuration; or

2) designing a new solution. The capability monitoring and adjustment are performed cyclically

and the capability delivery solution evolves according to the business requirements of the client.

The vendor accumulates capability delivery performance and context data from multiple clients

and uses this information to update the capability delivery solution and validate CSM.

Create CSM
Define

capability
model

Select
appropriate

configuration

Deploy
solution

Monitor
delivery

Change
configuration

Engage new
client

Update CSMUpdate capability
model

Define SSB
selection

model

Configure SSB
selection

model

Goals not achieved
Context has changed

Figure 2. The evolutionary capability development process

25

2.3 Capability Modeling

The capability model defines vendor’s ability and capacity to provide a solution to clients facing

specific circumstances. Figure 3 provides a simplified overview of the key elements used in

capability modeling as well as their relation to the configuration concept used in this article.

Goals are business objectives the capability allows to achieve. They are measured by KPIs. The

capability is designed for delivery in a specific context as defined using context elements. The

context elements name factors affecting the capability delivery while context situations refer to

combinations of context element values. The process element specifies a capability delivery

solution. Process variants describe the capability delivery process for a specific context situation

while the associated configuration of the solution encompasses all technical, human, and

knowledge resources necessary to execute the process. Consequently, the configuration enables

capability delivery. Multiple configurations can be used for capability delivery.

A configuration can include multiple process variants. The client can switch from one process

variant to another or invoke them simultaneously during solution delivery depending on context

situation.

In order to ensure that capability is delivered as expected in different contextual situations,

adjustments are used to adapt capability delivery [12]. The adjustments take context data and

KPIs as input and evaluate potential changes in capability delivery. Changing the configuration

from one to another is perceived as one of the possible adjustments. Thus, the adjustments can be

used to implement the SSB selection model.

Figure 3. Key concepts of capability modeling

From the evolutionary development perspective, the key aspects are that: 1) capability can be

delivered in different context situations while each individual client faces just some of these

context situations; 2) process variants specify a solution for dealing with one or several context

situations (for software-service bundle these variants cover both, different process variants in the

software product if this product has a process-oriented architecture and different variants for the

service bundled with the software product as a part of configurations); and 3) relationships

among context situations, performance, and process variants are not necessarily known in

advance and can be induced from the solution’s usage data.

3 Evolutionary Development Stages

The evolutionary development process includes two distinctive phases: 1) design stage – when

the initial configuration of the software-service bundle is selected and deployed for a new client;

26

and 2) delivery stage – when the software-service bundle is used by the client and it is adjusted

according to changing circumstances.

3.1 Design Stage

During the design stage, SSB is selected by matching context situations and by evaluating

expected business value of tentative configurations.

3.1.1 Matching Context Situations

At the beginning of the design stage the vendor develops a capability model corresponding to the

software-service bundle to be provided to clients. Every context factor used in selection of the

configuration has a finite set of values or context range 1(,...,)
ii i iTCR cr cr , where iT represents a

number of values for the ith context element. These values are obtained by categorizing actual

values of context observations also referred as to measurable properties [13]. The categories

enable for relative comparison of clients.

Combination of context element values form the context range yields a set of context

situations 1 1(,...,) ...H NCS CS CR CR (H is the number of context situations). CSM is defined as a

matrix with elements , 1,..., , 1,...,ija i H j N , where 0,1ija relates context situations to suitable

configurations. The matrix element 1ija indicates that configuration Oj is suitable in the case of

context situation CSi. The same configuration could be suitable for multiple context situations.

One configuration could encompass multiple process variants.

Upon engaging a new client, its most plausible context situation is identified as CS
new

.

Appropriate solutions are identified by

(| 1)new

j ij iO a CS CS (1)

where is a set of matching configurations for the new client.

Eq. 1 finds matching configurations appropriate for the context situation faced by the new

client. If no appropriate configuration is available, the client has a choice to select a

configuration having the highest level of overlapping with support context situations.

3.1.2 Value-Based Selection

The context matching step yields a set of tentative configurations without a regard to their

potential business value balancing costs and benefits associated with using a particular

configuration. It assumed that the value-based selection can be conducted on the basis of

information provided in the goal model of the overall capability model. It selects the

configuration providing the best expected business value what is formally expressed as

1 1max(()) (,..., , ,...,)
j

new new

j t Lt L

O

V O F K K w w

 . (2)

V is an estimated SSB value for the client depending on the configuration selected, the

superscript refers to the new client, 1 ,...,new new

t LtK K are values of KPI at time period t, 1,..., Lw w are

weights indicating relative contribution of each KPI toward the overall business value and F is a

functional relationship between V and KPI. It is assumed that KPIs are positively correlated with

business value and large values are preferable (if small values are preferred then the negative

value of KPIs is included in Eq. 2).

During the design stage (t = 0) some of the KPI values are known, some can be estimated and

some are known or irrelevant. The weights set to zero for the latter KPI. An example of the

known KPI is fixed licensing fee while fee per every service request can only be estimated

during the design stage.

27

The value calculation function F is specified in the capability model as an adjustment. That

enables specification of any desired functional form of the function and the same specification

can be used during the run-time to evaluate a need for switching to a new configuration.

Assuming that a client sets target values for KPI 1 ,....,new new

L , where the subscript l refers to the

KPI, an exact form of the value function can be specified as a weighted sum of ratios between

KPI values and their targets (Eq. 3).

1

L

i iti
V w

 , (3)

where
1

new new

ij it iK

 if KPI and business value are positively correlated, otherwise

1

new new

ij i itK

 .

The configuration selected based on the above considerations is set up for the client and made

ready for operations. In this context, there might be a setup time required for deploying the

configuration.

3.2 Delivery Stage

During the delivery stage, actual context situations and delivery performance are monitored. The

performance monitoring is carried out by gathering real-time values of KPI
new

itK , where

superscript identifies the client, the subscript i refers to KPI being measured and t refers to the

measurement time. The current value is compared to the performance target. If
new new

it iK then

the ith performance objective is not met and a recommendation to revise the solution is issued.

Obviously, one should evaluate to what extent the software solution is responsible for

underperformance.

The context monitoring is performed by comparing the observed context situation
new

tCS for the

new client at the tth time moment to the context situations supported by the current

configuration, i.e., relationship
new

t OCS CS , where OCS is a set of context situations supported by

configuration Oj used by the client. If the relationship does not hold then a warning is issued

notifying that the observed context situation is not explicitly supported by the current

configuration. The context monitoring serves as an advanced warning system to potential

performance deterioration since it is not known whether the current configuration is suitable for

the observed context situation. That might lead to an unexpected behavior.

3.3 Evolution

Evolution in software and systems engineering commonly is described as the process of

gradually adapting a (software) system to requirements and changes which could not be

anticipated at the time of systems development, but occurred during its time of use [14]. Three

main causes for the evolution of a software-service bundle can be distinguished: (1) the client's

requirements regarding the service remain unchanged but runtime shows that the features of the

software do no longer meet these requirements, (2) the client demands regarding the service

change and require changes in the software, and (3) the vendor's requirements to the software

change and require changes in the software-service bundle.

In this article, the focus is on the first cause, i.e., when the software during runtime does not

longer meet the requirements. Violations of performance objectives or observation of

unsupported context situations triggers a warning suggesting an upgrade of the current

configuration. In response to this warning a client might decide on upgrading the current

configuration by selecting a more suitable configuration from CSM. This is a suitable approach

if the actual context situation is different from the one identified during the design stage or it has

changed. However, if underperformance is observed for the supported context situation and it is

28

attributed to the software product then the vendor might need to reevaluate CSM or a special

software-service bundle has to be developed for the particular client.

For the second evolution cause, changing client demands, new agreements between vendor

and client regarding the software-service bundle and its configuration are required. The third

cause, changing requirements to the software, might in some cases lead to a new software

version which does not have any effects on the agreement with the client, i.e., the client would

not notice that there is a new version. But a new software version could also have effects on the

service quality. If this is the case, new agreements with the client might be needed.

4 Application Example

Business processes in many industries require collaboration among two or more companies.

Often this collaboration involves business information exchange in a form of data exchange

messages [15]. Such messages can contain errors, which need to be corrected before further

utilization of the information. The correction of errors might require manual interventions which

will be referred to as “clearing services”. The example discussed in this article is motivated by a

real-life case in the energy industry, where a software development company provides software

for exchanging energy consumption data as well as associated business process outsourcing

services for handling data errors [16].

4.1 Case Description

Since the end of the 1990’s, energy industry in many European countries has undergone serious

changes due to market liberalization and the separation of energy grid and energy production.

Energy distribution companies are facing a changing business context caused by (a) new

regulations and laws from regulating authorities and (b) innovative technical solutions, e.g., for

implementing smart grids. Software solutions in this area have to support the business functions

within energy distribution companies and data exchange between the different market roles

(market communication). Examples for typical business functions are assets accounting,

processing and examination of invoices, automatic billing initiated by meter readings, meter data

evaluation, maintenance management (disposition, workforce management and mobility), and

order management. Market communication related to these business functions includes exchange

of information about consumption of energy, changes in customer data, or usage of energy grid –

to name only some examples. Given the constantly rising complexity of the market

communication, public utilities and other energy distributors increasingly implement outsourcing

of their business processes to external service providers.

The application case considered in this article is a medium-sized company in Germany

offering a software solution for energy distribution companies supporting the abovementioned

business functions, and – based on the same software solution – business process outsourcing

services for their clients. Thus, the company acts both as an independent software vendor (ISV)

and as a business service provider (BSP). The software solution is widely used by public utilities

in Germany, in particular for electricity, natural gas, district heating, and water. The focus of the

BSP part are business processes that deal with market communication. Given the complexity of

the market relationships, exchanged data may get into conflict or create inconsistencies with

other data. If this is the case, manual intervention or clearing is required. Thus, the BSP acts as a

“clearing center” for the occurring exceptions if they are covered by the contractual agreement

between client (e.g. a public utility) and the BSP.

Within this clearing center, different kinds of services are offered, some of them specializing

on the kind of utility offered (energy, gas, water), others offering different levels of clearing

support. These services usually are bundled with the case company’s software solution, i.e., the

client buys or leases the software solution and orders clearing services. The case company offers

29

several software-services bundles, two of which are “clearing support” and “enhanced exception

handling”:

 Clearing support. If exceptions occur during data exchange, the erroneous data records are

registered and forwarded to the BSP. Each record is analyzed and, depending on the

contractual agreement with the client, the record is either corrected by the BSP or forwarded

to the responsible unit at the client side. Examples for such clearing support software-service

bundles are processing and consolidation of meter readings which are offered in different

variations to energy, gas, and water suppliers. The software part provides automated

processing of meter readings (mass, data; several thousands of records per week) exchanged

between grid operator and metered service provider. The service part complements the

automated processing with manual clearing of exceptions, which is done with the same

software product, but requires manual entry of data.

 Enhanced exception handling. In some cases, erroneous data records cannot be corrected by

the clearing support because of so far unknown errors or missing data. In these cases manual

intervention by highly skilled experts is required which are called “knowledge workers”.

This manual process basically follows a case handling strategy and sometimes requires

interaction of BSP and client. Similar to the clearing service above, the enhanced exception

handling is also offered to energy, gas and water suppliers. Evolution of these services often

means to adapt the strategy of how to assign different qualifications of knowledge workers

and software functionality in order to fulfill the contractually agreed service level.

4.2 Software-Service Bundle

From the perspective of software-services bundles, the situation described in Section 4.1 can be

generalized as follows: A vendor offers business information processing services. These services

typically consist of data processing software, data processing services and, – if required –

clearing services by the back office staff of the vendor based on knowledge about the most

common data exchange exceptions. The data processing services ensure business information

processing on behalf of the client. Clients can choose between doing data processing and

clearing in-house or outsourcing it to the vendor. Figure 4 shows an overall data exchange

process from the client’s perspective.

Figure 4. The overall business information exchange process (Msg – message)

The client receives a message. Depending on a decision-making logic the messages are

processed along one or several process branches. The first branch represents a manual processing

(client’s employees correct errors). The second branch represents an automated processing using

the knowledge base on common exceptions provided by the vendor. However, some of the

30

exceptions might require manual intervention (“clearing”). A client uses the outsourcing service

provided by the vendor to deal with exceptions in the third branch. The client transfers the

exceptions to the outsourcing service and receives back the remedied data. Multiple branches can

be used simultaneously. For example, the client mainly uses in-house automated processing and

invokes the outsourcing service only if internal resources are overloaded. This decision is made

during the service delivery. Nevertheless, the solution should be configured in a way to support

both automated in-house processing and usage of the outsourcing service.

The process execution goals are timely processing of all messages and handling of all

exceptions. The main context factors affecting the process execution are the number of data

exchange messages received or processing load and load volatility. The load volatility

characterizes variations in the processing load what might have adverse consequences on

scheduling of resources assigned to the manual processing.

4.3 Model

The vendor possesses the data exchange capability provided to its clients by means of the

software-service bundle. The data exchange capability model (Figure 5) is created using the

concepts defined in Section 2.3. Goals, context, and process variants are the main elements of the

capability model important for the software solution selection method.

Figure 5. Data exchange capability model

The capability goals are timely data processing, correction of data exchange errors as well as

cost minimization and efficient utilization of resources involved in the data exchange process.

These goals are measured by the corresponding KPIs. The timely data processing goal is

measured as the processing time KPI PTK . The cost efficiency goal is measured by return on

investment KPI, which is calculated using KPIs measuring revenues from message processing,

fixed configuration setup cost and variable message processing cost.

The context elements affecting the capability are defined in Table 1. The processing load

context element is measured by the number of messages received per day and it assumes values

from the range of values. Not all context elements are used in configuration selection for the

software-service bundle. Current backlog and schedule context elements are used for run-time

decision-making.

31

The capability model also defines the overall data exchange process including three processing

variants (Figure 4). These process variants serve as the basis for defining configurations of the

software solution. The Allocate messages gateway represents decision logics for run-time

allocation of messages among process variants if several of them are included in the

configuration.

Table 1. Context values and their context ranges

Context element Context element value range

Processing load (CPL) Low, medium, high

Processing load volatility (CLV) Low, medium, high

Backlog (number of messages waiting for

processing)

0,…,1000

Calendar (scheduled hours for human resources) 0,…,100

Table 2. Capability support matrix for data exchange software-service bundle

Processing load level Load volatility O1 O2 O3

Low Low 1

Low Medium 1 1

Low High 1

Medium Low 1

Medium Medium 1 1

Medium High 1

High Low 1

High Medium 1

High High 1

Three configurations are offered to clients: O1 – manual processing of data exchange

exceptions; O2 – automated processing of data exchange exceptions; and O3 – combination of

automated processing of data exchange exceptions with availability of exceptions handling

outsourcing services. The configurations also vary by the fixed setup prices. The setup price of

O1 is assumed as a baseline or 100%. The setup price for O2 in the terms of the baseline price is

250%, and it is 300% for O3.

CMS is prepared according to the vendor’s expertise and historical data (Table 2). The matrix

lists context situations as combinations of values of CPL and CLV context elements. It shows that,

for instance, configuration O1 is suited for 1 low,lowCS . If multiple configurations are

suitable for a context situation, then the value-based selection is used to select one of the

configurations.

4.4 Results

The aforementioned capability model provides a foundation for delivering data exchange

solutions to clients. A simulated experiment is conducted to illustrate the software-service bundle

selection method. It simulates a flow of data exchange messages for a single client and the client

attempts to process these messages using one of the solutions provided by the vendor. Execution

of manual data processing activities in all configurations requires human resources drawn from a

limited pool of resources and has a variable duration depending on complexity of exceptions.

The message flow Dt varies over time and is described as an autoregressive process

1t tD D , where and are coefficients defining process shape and (0,)N is

normally distributed with the standard deviation . The average flow of messages / (1)

and affects the processing load context element. The relationship between
tD and value of the

32

processing load context element CPL is expressed as depicted in Eq. 4.

low,if 100

medium,if 00 1000

high,if 1000

PLC

 (4)

The coefficients and affect processing load volatility, i.e., larger values of these

coefficients result in a more volatile message flow. In this experiment 0.8 and / 5 . The

value of is varied to evaluate different context situations: 1) in the first experiment (EXP1) is

set to 10 to evaluate a low processing load situation; and 2) in the second experiment (EXP2)

is increased from 10 to 100 during the course of message processing simulation to evaluate the

impact of changes in context. Numerical values used in the experiments are practically grounded

though do not represent actual observations.

A new client defines that its typical context situation low,lownewCS . That is supported by

either O1 or O2. The most suitable configuration is selected according to the estimated value. In

this case, the value is determined by the return on investment KPI (i.e, all other KPIs have zero

weights). The return on investment KPI (Table 3) is calculated as a ratio between profit and total

costs and assuming that in the case of O1 there is 20% difference between single message

processing fee and costs, while this difference is 180% for O2. The calculation is performed for

three years period taking into account the expected load. At the design stage, KPI values can

only be estimated and actual values are evaluated once the configuration is up and running.

Since O1 has a better expected value of the return on investment KPI, this configuration is

setup for the client. That implies client receiving data exchange software and using manual

exceptions handling.

Table 3. Estimated KPI values at the design time

KPI O1 O2

Return on investment 14% 10%

Revenues 273 750 273 750

Fixed setup cost 10 000 150 000

Variable message processing cost 229 950 98 550

Figure 6.a shows monitoring results for EXP1. It includes values of ,

new

PT tK and the threshold

value 120new

PT minutes. The processing load context element CPL is constant while load

volatility CLV exhibits slight variations and occasionally assumes medium value not explicitly

supported by the current configuration O1. More importantly, ,

new

PT tK frequently exceeds the

threshold value what triggers a recommendation to reconsider the configuration. CSM suggests

that O2 is appropriate for dealing with 2 low,mediumCS . The switch to O2 takes place at time

period 250 minutes. One can observe that performance is significantly improved.

EXP2 simulates a permanent change of the context situation and CPL assumes medium value.

O2 is suitable for both 4 medium,lowCS and 5 medium,mediumCS , and experimental results

(Figure 6.b) show that O2 delivers satisfactory performance after the change in the context.

However, ,

new

PT tK is close to its threshold. Assuming, that a similar behavior is observed also for

other clients using O2 in similar conditions, the vendor might decide on updating CSM and

recommending to use exclusively O3 in context situation 5 medium,mediumCS . The simulated

switching takes place at time period 750 minutes, when O3 is deployed. This change results into

reduction of the processing time.

33

The experimental results demonstrate that context observations can be used to drive selection

of appropriate configurations on the basis of the common capability model.

Figure 6. Dynamics of simulated delivery results and configurations used: a) EXP1 and b) EXP2

5 Related Work

Related work can be found in the areas of selection of packaged applications and version

management. The multi-objective methods for selecting packaged applications allow for

comprehensive evaluation of offerings by different vendors [5]. The selection is based on the

generic set criteria and the alignment of these criteria with business needs is not ensured.

Importance of explicitly accounting for various business and operational goals in selection of

commercial-of-the-shelf applications is emphasized in [17]. Capilla et al. [18] describe methods

for designing different versions of business software depending on the application context. These

works focus on software architecture and design issues rather than the software management

decisions. Evolutionary development in software engineering [11] concerns the operational level

evolution of atomic development requirements. A value-driven approach to design of service-

oriented systems is proposed by Thomas and vom Brocke [19]. They use modeling to identify

various options for designing services and creating orchestrations. The cost-benefit analysis of

various options is conducted considering investment in different layers of Service Oriented

Architecture (SOA).

In literature the adaptation and evolution of software systems to changing situations is also

addressed in the field of “system maintenance”. Much work in this field observes that systems

are insufficiently prepared for quick adaptation and evolution, i.e., there is the criticism of poor

flexibility [20]. According to [21], 65% of system modification costs are caused by adapting the

system to changed requirements when the system already has been deployed to the client.

Several approaches have been proposed aiming at more agile and flexible software systems,

among them is shortening the software development process by improving the methods applied

in this process [22]. In this context, [23] emphasizes that software engineering techniques are not

0

50

100

150

0 50 100 150 200 250 300 350 400

C
o
nt

ex
t

v
al

ue

P
ro

ce
ss

in
g

ti
m

e,
 m

in

Time

Low processing
load

Low load
volatility

Medium load
volatility

Processing
load

Processing time
threshold

0

50

100

150

400 500 600 700 800 900 1000

C
o
nt

ex
t

v
al

ue

P
ro

ce
ss

in
g

ti
m

e,
 m

in

Time

Low processing
load

Low load
volatility

Medium load
volatility

Processing
load

Processing time
threshold

Meadium
processing load

O1 O2

O3 O2

a)

b)

34

sufficiently prepared for application areas, where system boundaries are not static, but are

subject to continuous change.

Continuous Software Engineering (CSE) [24] develops methodologies, concepts and

techniques for evolvable software systems. The central goal of CSE is producing long-living,

evolution-capable software systems, which are of high quality and can be forward developed

continuously [25]. An essential part of the CSE approach is to achieve consistency and

transparency between (a) all artifacts of a software development process within a development

cycle (e.g. specification, design, and implementation) and (b) the various forward development

cycles of a software system and their modifications. This requires the identification of invariants

and dependencies in order to predict the potential impact of initial and induced modifications.

Evolution of information systems also attracts substantial research work. Here, an important

topic to be tackled is achieving more agile and flexible methods for information system

development [26]. Furthermore, the implementation of more flexible systems based on

component-based approaches is discussed [27]. [28] argues that there are different forms of

flexibility in software development which can be analyzed from a control theory perspective.

The method proposed relies on several existing methods. Goal modeling techniques [29] help to

identify the relevant objectives. Business activity monitoring techniques allow measuring the

process performance according to the specified goals and to identify significant changes in

performance [30]. Context model techniques [31] help to identify relevant context factors and to

represent their impact on process design. The software-service bundle selection method

developed in this article extensively uses categorized context values. A similar approach is used

by [32] to model context-driven business processes. Furthermore, there is related work in the

field of service management from a service science perspective. In recent years, the perspective

on what is characterizing a service has shifted from an intangible product to a more process-

oriented focus [33]. A service process “… can be viewed as a chain or constellation of activities

that allow the service to function effectively” [34 p. 68]. Existing work tries to understand

service processes from three overall perspectives: input, transformation process and outcome

[35]. In contrast to manufacturing-based production processes, also customers provide

significant input in service processes [36]. This is clearly visible in our product-service bundle.

However, this input is not only limited to one customer, but also multiple customers which is

also acknowledged by service science [37]. The transformation process “entails the service

delivery and consumption process, and involves customer participation in the service

delivery/consumption process” [35 p. 1016]. For software-service bundles, we thus can divide

this perspective into the continuum of service co-production [38] and consumption process flow.

The latter is considered as a characteristic of services from a service operations management

perspective. The final outcome of the service is determined by the service provider as well as by

the service beneficiaries [39].

6 Summary and Future Work

The article presented and discussed the method for evolutionary development and configuration

of software-services bundles. The article showed that the vendor-client collaboration for

selecting the most suitable configuration of a given software-service bundle is feasible and

represents value co-creation between the vendor and client. The capability concept and the CDD

approach have been useful for this method to provide the common basis for defining software

solution and explicitly representing relationships among performance, context, and solutions.

The method so far is evaluated only using a simulation approach, and experiences from real-

world application cases are needed for further validation.

There are multiple directions of further research. Updating the capability support matrix

according to monitoring results is an important part of the method that requires further

elaboration. Classification and machine learning methods can be used for these purposes. The

decision to upgrade the solution is not an automated decision and usually involves a number of

35

considerations (e.g., business relations) not covered by the evolutionary development method.

Switching to a new configuration incurs additional costs. This factor also could be incorporated

into the decision-making process to evaluate cost-benefit aspects currently not considered in the

article.

In this article, process-oriented applications are considered. That could be generalized to other

types of applications and services assuming that multiple alternative capability delivery solutions

exist.

Another aspect which so far has not been sufficiently covered in our research is the business

value of the overall approach, i.e., is it worthwhile to invest in context modeling, definition of

capability matrix, software-service bundling, and evolutionary development? So far, our

simulation primarily addresses the evolutionary development aspect. When it comes to the

business value of context modeling, results from the Capability as a Service (CaaS) project

indicate that context modeling and capability design result in transactional and informational

benefits [40]. This experience from CaaS and the positive result of our simulation can be taken

as indication that also the combination of both parts can be expected to have a positive business

value. However, this needs a more thorough investigation in future work.

From a service science perspective, the co-production of services has to be seen as a

continuum which “can vary from none at all to extensive co-production activities by the

customer or user” [41, p. 8]. When specifying service processes, it thus has to be highlighted

which tasks are performed by which entity of the service system or service system network. For

software-service bundles, modeling of the service process with explicit distribution of tasks

between vendor and client could be a way to further optimize gathering of relevant data. This

will be part of future work.

References

[1] D. Miller, “The Problem of Solutions: Balancing Clients and Capabilities,” Business Horizons, vol. 45, no. 2,

pp. 3–12, 2002. Available: https://doi.org/10.1016/s0007-6813(02)00181-7

[2] B.W. Boehm, “Software Risk Management: Principles and Practices,” IEEE Software, vol. 8, no. 1, pp. 32–41,
1991. Available: https://doi.org/10.1109/52.62930

[3] A. Taudes, M. Feurstein and A. Mild, “Options Analysis of Software Platform Decisions: A Case Study,” MIS

Quarterly, vol. 24, no. 2, pp. 227–243, 2000. Available: https://doi.org/10.2307/3250937

[4] K. Pohl, G. Böckle and F. Van der Linden, “Software Product Line Engineering: Foundations, Principles, and

Techniques,” Springer-Verlag Berlin Heidelberg, 1st edition, pp. XXVI–467, 2005. Available:

https://doi.org/10.1007/3-540-28901-1

[5] A.S. Jadhav and R.M. Sonar, “Evaluating and Selecting Software Packages: A Review,” Information and

Software Technology, vol. 51, pp. 555–563, 2009. Available: https://doi.org/10.1016/j.infsof.2008.09.003

[6] H.H. Olsson and J. Bosch, “Towards Continuous Customer Validation: A Conceptual Model for Combining

Qualitative Customer Feedback with Quantitative Customer Observation,” in 6th Int. Conference on Software

Business, ICSOB 2015, LNBIP 210, pp. 154–166, 2015. Available:
https://doi.org/10.1007/978-3-319-19593-3_13

[7] J. Grabis and K. Sandkuhl, “Selection and Evolutionary Development of Software-Service Bundles:

A Capability Based Method,” in 28th Conference on Advanced Information Systems Engineering,

CAiSE 2016 held in conjunction with ASDENCA, Lecture Notes in Business Information Processing, vol.

249, pp. 3–14, 2016. Available: https://doi.org/10.1007/978-3-319-39564-7_1

[8] A. Vigtil and H.C. Dreyer, “Critical Aspects of Information and Communication Technology in Vendor

Managed Inventory,” 2008. Available: https://doi.org/10.1007/978-0-387-77249-3_46

[9] J.E. Scott and L. Kaindl, “Enhancing Functionality in an Enterprise Software Package,” Information &

management, vol. 37, no. 3, pp. 111–122, 2000. Available: https://doi.org/10.1016/s0378-7206(99)00040-3

[10] S. Bērziša, G. Bravos, T. González, U. Czubayko, S. España, et al., “Capability Driven Development: An

Approach to Designing Digital Enterprises,” Business & Information Systems Engineering, vol 57, pp. 15–25,

2015. Available: https://doi.org/10.1007/s12599-014-0362-0

https://doi.org/10.1016/s0007-6813(02)00181-7
https://doi.org/10.1109/52.62930
https://doi.org/10.2307/3250937
https://doi.org/10.1007/3-540-28901-1
https://doi.org/10.1016/j.infsof.2008.09.003
https://doi.org/10.1007/978-3-319-19593-3_13
https://doi.org/10.1007/978-3-319-39564-7_1
https://doi.org/10.1007/978-0-387-77249-3_46
https://doi.org/10.1016/s0378-7206(99)00040-3
https://doi.org/10.1007/s12599-014-0362-0

36

[11] I. Sommerville, “Software Engineering,” Pearson, 10th edition, 816 p, 2015.

[12] J. Grabis and J. Kampars, “Design of Capability Delivery Adjustments,” in 28th Conference on Advanced

Information Systems Engineering, CAiSE 2016 held in conjunction with ASDENCA, Lecture Notes in

Business Information Processing, vol. 249, pp. 52–62, 2016. Available:

https://doi.org/10.1007/978-3-319-39564-7_5

[13] J. Grabis and J. Stirna, “Advanced Context Processing for Business Process Execution Adjustment,” in

CAiSE 2015 Workshops, LNBIP, vol. 215, pp. 15–26, 2015. Available:

https://doi.org/10.1007/978-3-319-19243-7_2

[14] T. Mens, “Introduction and Roadmap: History and Challenges of Software Evolution,” in Software evolution
Springer Berlin Heidelberg, pp. 1–11, 2008. Available: https://doi.org/10.1007/978-3-540-76440-3_1

[15] A. Schmidt, B. Otto and H. Österle, “Integrating Information Systems: Case Studies on Current Challenges,”

Electronic Markets, vol. 20, pp. 161–174, 2010. Available: https://doi.org/10.1007/s12525-010-0037-8

[16] K. Sandkuhl and H. Koc, “On the Applicability of Concepts From Variability Modelling in Capability

Modelling: Experiences From a Case in Business Process Outsourcing,” CAiSE 2014 Workshops, LNBIP,

vol. 178, pp. 65–76, 2014. Available: https://doi.org/10.1007/978-3-319-07869-4_6

[17] C. Alves, X. Franch, J.P. Carvallo and A. Finkelstein, “Using Goals and Quality Models to Support the

Matching Analysis During COTS Selection,” COTS-Based Software Systems, Lecture Notes in Computer

Science 3412, pp. 146–156, 2005. Available: https://doi.org/10.1007/978-3-540-30587-3_25

[18] R. Capilla, O. Ortiz and M. Hinchey, “Context Variability for Context-Aware Systems,” Computer, vol. 47,

pp. 85–87, 2014. Available: https://doi.org/10.1109/mc.2014.33

[19] O. Thomas and J. Vom Brocke, “A Value-Driven Approach to the Design of Service-Oriented Information
Systems – Making Use of Conceptual Models,” Inf. Syst. E-Business Management, vol. 8, no. 1, pp. 67–97,

2010. Available: https://doi.org/10.1007/s10257-009-0110-z

[20] R. France and B. Rumpe, “Model-Driven Development of Complex Software: A Research Roadmap,” IEEE

Computer Society, 2007. Available: https://doi.org/10.1109/fose.2007.14

[21] A. Al Kalbani and K. Nguyen, “Designing Flexible Business Information System for Modern-Day Business

Requirement Changes,” IEEE, vol. 2, 2010. Available: https://doi.org/10.1109/icste.2010.5608774

[22] J.-Y. Chung and K.-M. Chao, “A View on Service-Oriented Architecture,” Service Oriented Computing and

Applications, vol. 1, no. 2, pp. 93–95, 2007. Available: https://doi.org/10.1007/s11761-007-0011-2

[23] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay and M. Munro, “Service-Based Software: The

Future for Flexible Software,” in 7th Asia-Pacific Software Engineering Conference, ASPEC 2000, pp. 214–

221, 2000. Available: https://doi.org/10.1109/apsec.2000.896702

[24] H. Müller and H. Weber, Eds., “Continuous Engineering of Industrial Scale Software Systems,” Dagstuhl

Seminar #98092, Report No. 203, Schloss Dagstuhl, March 1998.

[25] M. Grosse-Rhode, R. Kutsche and F. Bübl, “Concepts for the Evolution of Component-Based Software

System,” Technical Report, Fraunhofer ISST, Germany, October 2000.

[26] P. Agerfalk, B. Fitzgerald and S. Slaughter, “Introduction to the Special Issue – Flexible and Distributed

Information Systems Development: State of the Art and Research Challenges,” Information Systems Research,

vol. 20, no. 3, pp. 317–328, 2009. Available: https://doi.org/10.1287/isre.1090.0244

[27] V. Wulf, V. Pipek and M. Won, “Component-Based Tailorability: Enabling Highly Flexible Software

Applications,” International Journal of Human-Computer Studies, vol. 66, no. 1, pp. 1–22, 2008. Available:

https://doi.org/10.1016/j.ijhcs.2007.08.007

[28] M. Harris, R. Collins and A. Hevner, “Control of Flexible Software Development Under Uncertainty.
Information Systems Research, vol. 20, no. 3, pp. 400–419, 2009. Available:

https://doi.org/10.1287/isre.1090.0240

[29] E. Kavakli, “Modeling Organizational Goals: Analysis of Current Methods,” in Proc. the ACM Symposium on

Applied Computing, SAC '04, pp. 1339–1343, 2004. Available: https://doi.org/10.1145/967900.968171

[30] J. Friedenstab, C. Janiesch, M. Matzner and O. Müller, “Extending BPMN for Business Activity Monitoring,”

in Proc. the Annual Hawaii International Conference on System Sciences, pp. 4158–4167, 2012. Available:

https://doi.org/10.1109/hicss.2012.276

[31] H. Koç, E. Hennig, S. Jastram and C. Starke, “State of the Art in Context Modelling – A Systematic Literature

Review,” L.S. Iliadis, M.P. Papazoglou and K. Pohl, Eds., in Advanced Information Systems Engineering

https://doi.org/10.1007/978-3-319-39564-7_5
https://doi.org/10.1007/978-3-319-19243-7_2
https://doi.org/10.1007/978-3-540-76440-3_1
https://doi.org/10.1007/s12525-010-0037-8
https://doi.org/10.1007/978-3-319-07869-4_6
https://doi.org/10.1007/978-3-540-30587-3_25
https://doi.org/10.1109/mc.2014.33
https://doi.org/10.1007/s10257-009-0110-z
https://doi.org/10.1109/fose.2007.14
https://doi.org/10.1109/icste.2010.5608774
https://doi.org/10.1007/s11761-007-0011-2
https://doi.org/10.1109/apsec.2000.896702
https://doi.org/10.1287/isre.1090.0244
https://doi.org/10.1016/j.ijhcs.2007.08.007
https://doi.org/10.1287/isre.1090.0240
https://doi.org/10.1145/967900.968171
https://doi.org/10.1109/hicss.2012.276

37

Workshops – CAiSE 2014 International Workshops, Thessaloniki, Greece, June 16–20, 2014, LNBIP, pp. 53–

64, 2014. Available: https://doi.org/10.1007/978-3-319-07869-4_5

[32] M. Born, J. Kirchner and J.P. Muller, “Context-Driven Business Process Modeling,” in Advanced

Technologies and Techniques for Enterprise Information Systems, ICEIS 2009, Milan, Italy, pp. 17–26, 2009.

Available: https://doi.org/10.5220/0002201500170026

[33] S.E. Sampson, “Visualizing Service Operations,” J. Serv. Res., vol. 15, pp. 182–198, 2012. Available:

https://doi.org/10.1177/1094670511435541

[34] H.J. Bitner, A.L. Ostrom and F.N. Morgan, “Service Blueprinting: A Practical Technique for Service

Innovation,” Calif. Manage. Rev., vol. 50, pp. 66–94, 2008. Available: https://doi.org/10.2307/41166446

[35] A.A. Yalley and H.S. Sekhon, “Service Production Process: Implications for Service Productivity,” Int. J.

Product. Perform. Manag, vol. 63, pp. 1012–1030, 2014. Available:

https://doi.org/10.1108/ijppm-10-2012-0113

[36] S.E. Sampson and C.M. Froehle, “Foundations and Implications of a Proposed Unified Services Theory,” Prod.

Oper. Manag., vol. 15, pp. 329–343, 2006. Available: https://doi.org/10.1111/j.1937-5956.2006.tb00248.x

[37] S.S Tax, D. McCutcheon and I.F. Wilkinson, “The Service Delivery Network (SDN) A Customer-Centric

Perspective of the Customer Journey,” J. Serv. Res., vol. 16, pp. 454–470, 2013. Available:

https://doi.org/10.1177/1094670513481108

[38] T. Hilton and T. Hughes, “Co-Production and Self-Service: The Application of Service-Dominant Logic,”

J. Mark. Manag., vol. 29, pp. 861–881, 2013. Available: https://doi.org/10.1080/0267257x.2012.729071

[39] J. Spohrer and S.K. Kwan, “Service Science, Management, Engineering, and Design (SSMED): An Emerging

Discipline,” Int. J. Inf. Syst. Serv., vol. 1, pp. 1–31, 2009. Available:
https://doi.org/10.4018/9781615209675.ch121

[40] J.P.C. Vega, “Supporting Organizational Induction and Goals Alignment for COTS Components Selection by

Means of i*,” in Proc. the 5th International Conference on Commercial-off-the-Shelf (COTS)-Based Software

Systems, ICCBSS '06, Feb. 13–16, IEEE, 2006. Available: https://doi.org/10.1109/iccbss.2006.28

[41] S.L. Vargo and R.F. Lusch, “Service-Dominant Logic: Continuing the Evolution,” J. Acad. Mark. Sci., vol. 36,

pp. 1–10, 2007. Available: https://doi.org/10.1007/s11747-007-0069-6

https://doi.org/10.1007/978-3-319-07869-4_5
https://doi.org/10.5220/0002201500170026
https://doi.org/10.1177/1094670511435541
https://doi.org/10.2307/41166446
https://doi.org/10.1108/ijppm-10-2012-0113
https://doi.org/10.1111/j.1937-5956.2006.tb00248.x
https://doi.org/10.1177/1094670513481108
https://doi.org/10.1080/0267257x.2012.729071
https://doi.org/10.4018/9781615209675.ch121
https://doi.org/10.1109/iccbss.2006.28
https://doi.org/10.1007/s11747-007-0069-6

